

Genetics in support of fisheries and aquaculture management

17-19 September
Faro, Portugal

Close-Kin Mark Recapture

With the kind support of Ilaria Coscia and CSIRO Australia

Close-Kin Mark Recapture

- There are others out there ...
- Glossary
- Introduction and principles
- Underlying assumptions
- Needs
- Examples
- Does it really work?
- A roadmap
- On the need to scope
- Managing expectations
- Conditions
- GECKA
- Becoming an expert

Volume 89, Issue 6
 Special Issue: Fish, Genes and Genomes: Contributions to Ecology, Evolution and Management

Pages: 2471-2767
December 2016

onno. or FISH BIOLOGY
 fsbi
 fsbis

SYMPOSIUM PAPER
Can estimates of genetic effective population size contribute to fisheries stock assessments? ${ }^{\dagger}$
J. R. Ovenden 区, G. M. Leigh, D. C. Blower, A. T. Jones, A. Moore, C. Bustamante, R. C. Buckworth, M. B. Bennett, C. L. Dudgeon

First published: 11 October 2016 | https://doi.org/10.1111/jfb.13129 | Cited by: 14
${ }^{\dagger}$ This paper was presented at the FSBI Symposium, Bangor, in July 2016. Its content may not follow the usual style and format of the Journal of Fish Biology.

A Glossary

CKMR: Close-Kin Mark Recapture

CPUE: Catch Per Unit Effort

POPs: Parent-Offspring pairs

HSPs: Half-sib pairs

SBT: Southern Bluefin Tuna

SNP: Single Nucleotide Polymorphism (a genomic marker)

In a Nutshell

Officially Introduced in 2016

Close-Kin Mark-Recapture

Mark V. Bravington, Hans J. Skaug and Eric C. Anderson
> Proposes an alternative, fisheries-independent way to calculate abundance of a population.
> Based on the principle of mark-recapture, - offspring to 'mark’ two parents, by their genetic make-up.

In Principle

In Principle

"DNA tagging": One juvenile marks two parents.

1. The bigger the population, the less likely to find kin-pairs (recaptures).
2. The higher the adult survival rate, the longer the time to recapture a parent after sampling its offspring
3. Other complications: adult mortality before being sampled, reproductive variability....

Assumptions

- Each individual has a mother and a father
- You can reliably find POPs and HSPs via genetics/genomics
- "Everything else is just maths and logistics!" (Bravington, pers. comm.)

CKMR is a flexible tool that can and should be adapted to each specific case.

Needs

- Covariates: year, length, age (?), rough location
-*Enough* samples (to get enough kin-pairs)
- Juvenile samples, and (for teleosts) samples across full size range of adults
- Helps to know total catches-at-size over time
- But NO need for CPUE, selectivity assumptions, surveys...

In a Nutshell for Nerds ...

Close-Kin Mark-Recapture

Mark V. Bravington, Hans J. Skaug and Eric C. Anderson
accordingly. The kinship probability becomes
(3.3)

$$
\mathbb{P}\left[K_{i j}=\mathrm{MO} \mid z_{i}, z_{j}\right]
$$

$$
=\frac{\mathbb{I}\left[y_{i}+\alpha \leq y_{j}\right]}{N_{\odot y_{j}}} \times \begin{cases}1 ; & t_{i}>y_{j}, \\ \phi_{i}\left(t_{i}, y_{j}\right) ; & t_{i}<y_{j},\end{cases}
$$

where $\phi_{i}\left(t_{i}, y_{j}\right)$ is the probability that i survives from t_{i} to y_{j}.

Example southern bluefin tuna (SBT)

- Aus' ex-most valuable fishery
- W/wide \$1-2B p.a.
- Heavily depleted, prior to this study, absolute N highly uncertain
- "Challenging" conventional data

- Main catch:
- juveniles (Australia)
- subadults (Indian ocean)
- few adult spawners (Indonesia)

- Maturity age ~ 10
- Lives to 40+ if allowed

Example

southern bluefin tuna (SBT)

- 2006: Sampling for CKMR starts;
- One juvenile ground - One spawning ground;
- 2012: about 8000 juveniles and 5000 adults had been genotyped (20-25 microsatellite loci);
- 2019: 22000 samples - switch to SNPs;
- Estimated size of adult population $=\mathbf{2} \times 10^{6}$ (higher than previously known).

Example

white shark

SCIENTIFIC REPRTS

OPEN Genetic relatedness reveals total population size of white sharks in eastern Australia and New Zealand

1. 19 hase 2017

150 lanary $301 x$
R. M. Hillary ${ }^{1}$, M. V. Bravington', T. A. Pattersen ${ }^{1}$, R, Grewe ${ }^{1}$, R. Bradford ${ }^{1}$, R. Foutry ${ }^{1}$,
R. Gunasekara', V, Peddemors', L, Werry', M, R, Francis ${ }^{5}$, C, A, , , Duffy ${ }^{4}$ B B. D. Bruce ${ }^{1}$

- Introducing the use of Half Sibling Pairs (HSP)
- Sampling adults is very difficult

If you sample two juveniles a few years apart that are an HSP, we can estimate the probability of them having the same mother or father suitable modelling will estimate adult abundance and its trend, plus adult survival rate.

Does it Work?

Apparently so!

Further validation: populations of brook trout (2400 individuals over 5 years)

CKMR results compared to those obtained through electrofishing very consistent

Methods in Ecology and Evolution

RESEARCH ARTICLE
Validation of close-kin mark-recapture (CKMR) methods for estimating population abundance

Daniel E. Ruzzante Buhariwalla, Joanna Mills Flemming, Hans Skaug

BUT!

> CKMR is NOT ‘just’ genotyping thousands of individuals!
$>$ Required: Background knowledge on the biology of target species.
> Required: Careful design of study in question.

Where and how to start?

Genetic close-kin analysis on white anglerfish (Lophius piscatorius) for abundance estimates in support of deep sea fisheries management under the Common Fisheries Policy

© 2019 Ilaria Coscia/GECKA - Not to be reused without permission!

CLOSE-KIN MARK RECAPTURE FOR STOCK ASSESSMENT a survival guide

IS CKMR applicable?

NO, without a good knowledge of the biology of the species or for certain life-histories

scoping study, FIRST

 it is useful, but is it beasible? Is age data reliably available? Would you be able to sample enough across age classes? steps to success

IS CKMR usefult?
Given the biology of the species:

- is it too costly?
- is the the stock too small? - is it already well assessed?
assemble \boldsymbol{a} team
you need lab technicians, geneticists,
bioinformaticians and stock assessment expert...

1. Design

2. Sampling

Once you have a rough idea of how many samples are needed, go out and get them...

4. Kin-finding

Strict control for false positives and \times estimate of false negatives \cdots

5. Statistics

Consider covariates -age strcture, population structure, site-fidelity, lucky litters etc...

Кеу

- Good, qualitative knowledge of target species biology.
- Aging is important
- at least for juveniles;
- best "guesses" (e.g. from length) are useful too.
- Obtaining necessary number of samples feasible?

Better Not If

- Too costly - compared to fishery value. - Target stock is too small.
- Target stock is already well assessed?

Before the Start: Scope

- Biology okay?
- Sampling feasible?
- Value of fisheries?
- How many individual to sample (roughly) to expect a useful number of kin-pairs?
- (R package Microscoping - under development)

- If yes: more detailed design, to look at precision, optimality, how much ageing, etc.
- (R package optides - under development)

Before the Start: Scope

\bullet TIME and BUDGET:

- CKMR study in 6 months
- without a team of geneticists, statisticians, stock assessment experts
= wishful thinking!
- Most projects: >3 years [Start to CKMR estimate]
- Do not be intimidated: compare to the overall value of the target fishery
- Most effort/cost is invested in the first years

Before the Start: Scope

Sampling effort

Species
\bigcirc angler
O hake

Scope and Manage Expectations

(Roughly)
White anglerfish

- 1000 juveniles + 1000 adults
$>$ could result in ~90 POPs

European hake

- 5000 juveniles + 5000 adults
> could result in ~350 POPs

Conditions

- Genotyping has to be accurate (reducing error rate)
- Kin-finding must be controlled for falsepositives (and false-negatives)

GECKA

GECKA

Genetic close-kin analysis on white anglerfish (Lophius piscatorius) for abundance estimates in support of deep sea fisheries management under the Common Fisheries Policy
httpss//wwwoazti.es/gecka/

University of Salford MANCHESTER

Want to become a CKMR Expert?

March 2020 - Dates TBC

Instructors: Mark Bravington and Richard Hillary

Contact Sitemap FAQ Gloss
ssary
SharePoint Login
Admin Search Everything
EXPLORE US NEWS AND EVENTS MARINE DATA PUBLICATIONS CI
News archive
Meeting calendar
Press Room Blogs Training courses Annual Science Conference (ASC) Science symposia

TRAINING COURSES

ICES training ICES training courses
> Genetics in support of fisheries and aquaculture management
> Introduction to stock

Strengthen your career, broaden your knowledge, and widen your professional network with one of our training courses.

Courses in 2019

- Print it \triangle Send to f, in s

Genetics in support of fisheries and aquaculture management

17-19 September
Faro, Portugal

