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Animal breeding and productivity
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Figure 1.3, Genetic research initiated in the 1940 has resulted in remarkable developments in increasing the
productivity of domestic mammals and birds. Reproduced from Eknath et al. (1991) by permission
of World Fish Center.
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Plant breeding and productivity
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History of breeding

e Development of breeds from 1700

e The development of the theory of animal breeding was
pioneered by Sewall Wright and Jay L Lush early in last
century

e In his book ‘Animal breeding plans’, first published in
1937, Jay L. Lush discussed the principles and elements of
breeding plans for animals

5 DTU Aqua, Technical University of Denmark Qual

=
—
=

i




WE

Breeding

e Selective breeding exploits the underlying genetic variation
In a species to change traits in the direction desired by the

breeder
e Selection can change traits very fast

e Genetic changes are accumulative
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Fig. 2.1 Result of selection for growth rate over six generations when genetic improvement is
12.3% each generation (a figure that has been obtained in several breeding programs). The gener-
ation interval is illustrated by the run of the stair (distance between Ist and 2nd) and the rise of the
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Domestication

e Domestication: “The process by which a population of
animals become adapted to man and to the captive
environment by some combination of genetic changes
occurring over generations and environmentally induced
developmental events recurring during each generation”
(Price 1984)

e Domestication occur primarily through selection, i.e.
animals that are best adapted to a particular environment
produce more progeny that survive compared to those
that are less adapted

= Domestication is a slow process that takes place over a
relatively long time period
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Traits with a genetic background —single
genes

Albino aa Normal colour Aa V4 albino Yellow colour

(Yellow colour) g aa
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Figure 2.9 Inheritance of albinism in rainbow trout.
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Quantitative traits

e A quantitative trait is a measurable phenotype that depends on the
cumulative actions of many genes and the environment

 As the number of genes (each with two alleles) affecting a trait increases the
number of genotypes increases as well as the variation
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Quantitative traits are also influenced by the
environment

e Genetically identical individuals can have different
phenotypes

Height (cm)

e Quantitative traits are determined by the combined
Influence of the genotype at several loci and the
environment
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Quantitative traits

are influenced by the environ-
ment as well as genotype

Reaction norm
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Measuring heritability

 The fraction of the total phenotypic
variance that is due to variation in
genes is called the heritability of
the trait

» We need to partition the total
phenotypic variation (V) into a
component due to genetic
variation (Vg) and to a component
due to environmental variation

(Ve)

» If the phenotypic distribution can
be moved by selection

— then the trait has a genetic
component

— then the trait is heritable

11 DTU Aqua, Technical University of Denmark
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Partitioning of phenotypic variation

ePhenotypic value of an individual:

P=G+E

ePhenotypic variance within a population:

12

Vp = Vg + Ve + 2C0vge

Ve, = phenotypic variance
Vs = environmental variance

Covge = Interaction between genetic &
environmental effects
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Partitioning of genetic variation

e There are two broad categories of gene effects:

- Additive gene effects
— occur when the combined effects of alleles at different loci are equal to the sum
of their individual effects
e Non-additive gene effects

— dominance effects, the effect of a given allele depends on the interaction with
the other allele present at the same locus.

— epistasis, interaction between alleles at different loci

e Only additive genetic effects are fully transferred to the next generation
in a strict and predictable way

= selection acts upon additive effects
— Thus we want to estimate heritability of a trait based on additive effects only
— This will allow us to predict how a population or strain will respond to selection

13 DTU Aqua, Technical University of Denmark Quantitative genetics 18/09/2019
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Heritability

Breeders need to know how much of the phenotypic variability of a trait is due
to genetic variance, and how much is due to non-genetic environmental factors

This is the ‘broad-sense heritability’: H? = V/Vp

More useful to know is the proportion of the phenotypic variation is due to
additive gene effects

The heritability (narrow-sense) of a trait is defined as the proportion of the total

phenotypic variation that is due to heritable (additive genetic) effects that can
be passed on from parent to offspring :

VAV, = h?
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Heritability estimates

e Offspring can resemble their parents for reasons other than their
genetic relationships

e Heritability estimates are only reliable if there is no correlation
between the environment of offspring and parents

e Heritability estimates only apply for specific environments and
may change if moving the population to a new environment

e Economically important traits in aguaculture
—h? =[0.1-0.4]
— Estimates are trait specific but also population specific

15 DTU Aqua, Technical University of Denmark Quantitative genetics 18/09/2019
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The breeders equation

h? allows prediction of response to artificial (or natural) selection

The relationship between h? and the response to selection, is given
by:

R=h2*S

R s the response to selection, given by the difference between the
population mean before selection and the mean of the offspring of
selected parents after one generation of selection.

« S is the selection coefficient, given by the difference between the
unselected population mean, and the mean of the selected parents.

« |If we know the heritability of a trait and the strength of artificial selection
applied to it, we can predict the response to selection >>> so...

16 DTU Aqua, Technical University of Denmark Quantitative genetics 18/09/2019



Selection response

Response to selection

R=h2S
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One more generation:
We know: h? = 0.75
We choose X, = 133

What is R?
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Selection response

Response to selection
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Selection Iimits

eThere may be several reasons for reaching a
plateau in genetic gain in a breeding program
—Narrow genetic variation in the base population

—Small effective population size resulting in inbreeding
and increased homozygosity

—Few loci controlling the traits selected for

—Artificial selection may be outweighed by natural
selection

eBut for quantitative traits controlled by a large
number of genes, selection limits will rarely be
reached if inbreeding is kept low

—Thus selection is a powerful tool to change animal
populations in the desired direction

19 DTU Aqua, Technical University of Denmark Quantitative genetics 18/09/2019
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Breeding value

20

How to estimate Breeding value?

%W

10 litre
What is the Breeding value of this

A =h*(X. - Xi)

i P

10 Tit re

12 litre

L5 litre 8 litre

Breeding value =h?(milk production-average)

=(12-7.625)*h* = 4.35 litres
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Use of genetic/genomic tools in breeding
programs

CARTOONSTOCK

’ L0

"He's being bred for Hawaiian pizza!"
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Breeding programs

e A breeding program is the

e Simple individual based selection —

e Family based breeding programs

23

planned breeding of a group
of animals or plants, usually
iInvolving at least several
individuals and extending over
several generations

largest animals/plants used for
next generation

selecting for multiple traits
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Difference between

» Mass selection  Family based breeding
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Methods of artificial selection

e Many economically important traits cannot be recorded on
live individuals
— Disease resistance and product quality
— Lipid content, feed conversion, fillet yield, flesh color, etc.

e family based selection is a key strategy

— Records of close relatives allow selection for traits like disease
resistance and product quality

e Breeding value of individual | -
A =h*(X, - Xi)

e Breeding value of full sib families

, -
—rs=0.5 nh*(X;, — X jn)

Aj ~ 2 2
2+(n-1)(h" +2c5)
e Breeding value of half sib families
—1,=0.25 o P7(XG =X )
25 DTU Aqua, Technical University of Denmark J B 4 + (n —1)(h2 + 4C|%|S) )/2019
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Basic conditions for a breeding
program

e There must be variation between individuals for the traits
of interest

e A part of the variation has to be under genetic control as
this is the only part which will be transferred to the next
generation

e The life-cycle of the organism must be known and possible
to control

e Individuals must be identifiable (tagging!) in order to keep
track of their pedigree

26 DTU Aqua, Technical University of Denmark Quantitative genetics 18/09/2019
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How to start a breeding program
e Establishment of a baseline population:

= General idea to use several wild and or farmed populations
to assure sufficient genetic variation

= However, depend on geographical and environmental
coverage (local adapted populations?)

e Level of inbreeding in farmed populations should be
assessed

e A minimum of 100 males and 100 females should be used
— but more is better (more to choose from, less likelihood
of inbreeding)

27 DTU Aqua, Technical University of Denmark Quantitative genetics 18/09/2019



2014 Survey of number of broodfish used

Figure 3: Number of programs according to the number of broodfish involved at each
generation, grouped by species.
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The values above series represent the number of lines used in each program. md: missing data.
28 DTU Aqua

=
—
=

i

3/09/2019



NE

Breeding goals

® Reduced cost of production (ensuring price
competitiveness)

e High product quality (ensuring competitiveness in the
market)

e Improved welfare and reduced stress

Traits:
e The trait must be of economic or ethical importance

e It must show variation and part of the variance must be
heritable

e It should be possible to measure the trait accurately at a
reasonable cost

29 DTU Aqua, Technical University of Denmark Quantitative genetics 18/09/2019



Breeding goals

» Provide as many potential breeding goals with associated traits as
possible in 5 minutes.
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Primary selected traits in European
aquaculture

Figure 6: Number of programs according to the selected traits, all species included.
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Application of genetic/genomic tools

e Genetic traceablity

» Assesment of diversity/inbreeding

Pedegreeing

Mapping of traits (QTL)

e Marker assisted selection

e Genomic selection

32 DTU Aqua, Technical University of Denmark Quantitative genetics 18/09/2019



Genetic traceability

Protection of Intellectual property rights

33 DTU Aqua, Technical University of Denmark
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Genetic diversity indices

» Heterozygosity

e Number of alleles

Inbreeding

Effective number of breeders

34 DTU Aqua, Technical University of Denmark Quantitative genetics 18/09/2019
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DNA fingerprinting (pedigree establishment)

mother child father?
[ I
I
I I
I
I
I
| I
I I
I
I I [
I
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Common Garden experiments

P=G+E

No need for tagging
of individuals

36 DTU Aqua, Technical University
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Five randomized blocks with
eight pools each. Each of
the 4 water and nutrient
treatment combinations
occurs in two pools within
each block. Two pools are
required since six plants are
the maximum that can be
placed in a single pool.
Position of pools is
randomized within block.

@ Low Nutrient/High H;0
@ Low Nutrient/Low H-0
. High Nutrient/High H;0

. High Nutrient/Low H50
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Genetic mapping - markers

eE.g., 3 billion base pairs in the human genom

e Two genomes differ by 0.1%
—3 million differences between two individuals

<> 9 million known variable sites in the
genome (single nucleotide polymorphisms,
SNPs)

eODbjective is to find those genetic variants tha
are of importance

—directly important - genes influencing trait of
Interest

—indirectly important - genetic markers

38 DTU Aqua, Techtiical University of Denniark Quaintitative genetics 18/09/2018



Linked alleles tend to be inherited together
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Tester cross

40

Testcross
progeny
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Concepts: Linkage and Linkage Mapping

Linkage map:

- “is a map of the frequencies of
recombination that occur between markers
on homologous chromosomes during
meiosis.”

- distance is measured in cM.

Physical map:

- “shows the physical locations of genes and
other DNA sequences of interest.

- distance measure in base pairs

Comparative map:

- a map that compares linkage maps or

physical maps of related species based on
shared markers or sequences, respectively

(Fig. 2)
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Fig. 2. Test cross frequencies
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Basic principles of genetic
mapping

Pr (Gene location | data)

Mapping function

Chromosome

| = Marker

| = Gene for trait of interest
Need many polymorphic markers and information on trait variation in strain

42 DTU Aqua, Technical University of Denmark Quantitative genetics 18/09/2019
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Length at age (1) In brown trout
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Different approaches to
mapping

e Genetic mapping - Locating genes which affect the
phenotype by examining genetic markers

e Pedigree based methods:
—Linkage-mapping
—Count recombination events between markers and putative
gene
—Goal: use markers to find genes via linkage with markers

e Population based methods:
—Linkage disequilibrium or association mapping

—Use population history to detect markers in proximity with
the putative gene

—Goal: use markers to find genes via Linkage Disequilibrium
(LD)

44 DTU Aqua, Technical University of Denmark Quantitative genetics 18/09/2019
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QTL linkage-mapping
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Association mapping

Goal: Use genetic markers to find functional genes via linkage
disequilibrium (LD)

The essential idea is that markers close to the gene coding for
the functional variation may also have allele frequency
differences between phenotypes if there is linkage
disequilibrium between the marker locus and the gene of
Interest
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Linked alleles tend to be inherited together
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causes of association

A marker M can be informative of
the gene D due to:

e Direct causation (M=D)

eLinkage disequilibrium (M in LD with D)
e Population substructure

e Statistical artefacts false-positive
e Technical artefacts association
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Marker Assisted Selection

« MAS is an indirect selection process where a trait of interest is
selected based on a marker linked to a trait of interest (e.g.
productivity, disease resistance, abiotic stress tolerance, and
quality), rather than on the trait itself

e Can supplement/replace trait measurement, which can be
tedious and expensive

e Can be used for traits not recordable on live individuals

e Is not influenced by environment

e Is not influenced by life/developmental stage of individual
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Marker assisted selection
Development of resistant
strains of strawberry

 Marker linked to QTL for
resistance

* Crossing of elite non-resistant
strain with wild conspecific

o Selection of F2 seedlings

(embryos) homozygous for
the resistance linked marker
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Genomic selection

e Genomic selection is a form of marker-assisted selection in which genetic

51

markers covering the whole genome are used so that all quantitative trait

loci (QTL) are in linkage disequilibrium with at least one marker

Reference population: Development of prediction equations

Thousands of SNP 7
B - ol ‘
- ' Prediction Equatfonsj

Main population: Application of prediction equations

[ Phenotypes between SNP and
Thousands of SNP [ Prediction
A ’
relationships = | P s
gEBV
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Breeding value

52

How to estimate Breeding value?

%W

10 litre
What is the Breeding value of this

A =h*(X. - Xi)

i P

10 Tit re

12 litre

L5 litre 8 litre

Breeding value =h?(milk production-average)

=(12-7.625)*h* = 4.35 litres
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Genomic breeding values (GEBVSs)

Are recorded through:
eReference or training population
1) Estimation of trait values
2) Molecular marker scores (LD with QTL’s)
3) Pedigree information or Kinship
4) Establishment of prediction equations
eValidation population
—Evaluation of precision of GEBVs
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Advantages of Genomic Selection

Traditional Breeding

7 year
old bull

=T x
M

’H’H’?

m R
NS

Genomics
1 day old ‘5"‘
ay o
bullcalf | g S — ——> Agé.
5
Reliability: 50%

DMNA extracted from his hair sample tells us
how his future progeny are likely to perform.
This is ‘Genomics’.

Reliability: 705

Calving, Weight, Carcass, Milk &
Fertility performance from his
progeny increases the reliability
of his EBI/Eurostar when he is 7
years old.

7 year
old bull

Wx'ﬁﬂﬂ
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When he later becomes a breeding bull, he
will add to his figures and increase his
reliability % further.
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Use of molecular tools in European fish
breeding
Figure 5: Use of molecular tools in each program.
W genomics m marker-assisted selection m fingerprint for parentage assignment
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Programs
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Summary

e The theory of breeding genetics was developed early 20th
century

e Estimation of the heritability is key for all breeding
genetics

e The breeders equation allow estimation of the expected
response to selection

e The breeding value of an individual and family can be
estimated

e QTL mapping is an important application in modern
breeding

e Mapping allow Marker Assisted Selection and Genomic
selection to be performed

e Genetic tools are also used for traceability, variability and
pedigree establisment
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