Genetics in support of fisheries and aquaculture management

17-19 September Faro, Portugal

Genetic stock assessment

17-19 September Faro, Portugal

Dr. Sarah Helyar

What do we mean by 'genetic stock'?

- Populations that have limited gene flow between them
- Due to e.g. natal philopatry
- Leads to a degree of genetic differentiation
- This can mean that there is a mismatch of management and biological units
- This can ultimately lead to either under utilisation or overexploitation
- Fisheries management can be improved by incorporating genetics into baseline data, models, monitoring programs, through out processing: i.e. at all stages of the supply chain.

Case study 1: Atlantic herring

- Highly migratory small pelagic species
- High commercial value (€850 million, all clupeids 2000-2004)
- Historically very high numbers
- Typical boom and bust
- Studied for over 100 years
- IUU estimated as ~35% in Baltic, ~50% in North Sea.

Atlantic herring (Clupea harengus L.)

Neutral vs. Non-neutral

• SNPs developed from the transcriptome

• F_{ST} of a locus is significantly different to the expected distribution of F_{ST} under neutral expectations

 Must be removed when making inferences about neutral evolutionary processes, such as genetic drift and gene flow, as they may significantly bias results

• Can be used for investigating population structure (local adaptation) on ecological rather than evolutionary time scales

 Can increase the power for assigning individuals to populations of origin

Loci under selection

Loci under selection

Application of makers to Mixed Stock Analysis

Management case scenario		n	NE Atlantic	North Sea	"Transition"	Baltic Sea
MIX 1—"Skagerrak"	Simulated	80	0/0 (0-4)	40 /42 (24-51)	60 /58 (41-71)	0 /0 (0-17)
-	29 June 2002	81	0 (0-8)	52 (25-56)	40 (18-56)	7 (6-37)
	2 July 2003	84	11 (0-20)	35 (18-47)	51 (27-65)	2 (1-30)
	1 July 2008	66	0 (0-8)	26 (9-34)	64 (32-76)	10 (6-43)
MIX 2—"W Baltic"	Simulated	50	0/0 (0-4)	0/0 (0-10)	70/70 (44-80)	30/30 (17-52)
	5 October 2009	52	5 (0-15)	0 (0-9)	69 (39-80)	27 (14-53)
	10 October 2009	52	5 (0-13)	0 (0-6)	55 (31-73)	40 (22-66)
	··· · •					-

Case study 2: Atlantic Blue Fin Tuna

Case study 2: Atlantic Blue Fin Tuna

Case study 2: Atlantic Blue Fin Tuna

References:

- Limborg MT, Helyar SJ, et al. (2012) Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (*Clupea harengus*). <u>Molecular Ecology</u>, 21, 3686–3703.
- Bekkevold, D., Helyar, S. J., et el. (2015). Gene-associated markers can assign origin in a weakly structured fish, Atlantic herring. <u>ICES JMS, 72,</u> <u>1790–1801</u>.
- Rodriguez-Ezpeleta, et al. (2019). Determining natal origin for improved management of Atlantic bluefin tuna. *Frontiers in Ecology and the Environment*. <u>10.1002/fee.2090.</u>
- Hemmer-Hansen, J. et al. (2018) Genetic analyses reveal complex dynamics within a marine fish management area. <u>Evol. App. 12 :830-844.</u>