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The southern African marine realm is located at the transition zone between the Atlantic 
and Indo-Pacific biomes. Its biodiversity is particularly rich and comprises faunal and floral 
elements from the two major oceanic regions, as well as a large number of endemics. Within this 
realm, strikingly different biota occur in close geographic proximity to each other, and many 
of the species with distributions spanning two or more of the region’s marine biogeographic 
provinces are divided into evolutionary units that can often only be distinguished on the 
basis of genetic data. In this review, we describe the state of marine phylogeography in 
southern Africa, that is, the study of evolutionary relationships at the species level, or amongst 
closely related species, in relation to the region’s marine environment. We focus particularly 
on coastal phylogeography, where much progress has recently been made in identifying 
phylogeographic breaks and explaining how they originated and are maintained. We also 
highlight numerous shortcomings that should be addressed in the near future. These include: 
the limited data available for commercially important organisms, particularly offshore species; 
the paucity of oceanographic data for nearshore areas; a dearth of studies based on multilocus 
data; and the fact that studying the role of diversifying selection in speciation has been limited 
to physiological approaches to the exclusion of genetics. It is becoming apparent that the 
southern African marine realm is one of the world’s most interesting environments in which 
to study the evolutionary processes that shape not only regional, but also global patterns of 
marine biodiversity. 
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Introduction
Phylogeography is the study of the historical and phylogenetic components of the spatial 
distribution of gene lineages within and amongst closely related species.1,2 Many phylogeographic 
studies have focused on species of conservation concern,3 whilst others have used the approach 
to investigate species complexes4 or address questions in invasion biology.5 In many instances, 
results have been interpreted in a somewhat narrative manner, linking genetic disjunctions with 
past climates or physical barriers and limited dispersal. More rigorous interpretations can be 
obtained when phylogeography is used in a comparative context; if the genetic structure of co-
distributed but evolutionarily independent populations is congruent, then this reveals common 
processes that have driven genetic divergence.6,7 If focused on multiple taxa, phylogeographic 
studies can thus be a very powerful tool in the identification of locations and processes central to 
the origin and maintenance of biological diversity.8,9

In a recent review of phylogeographic studies, Beheregaray10 highlighted challenges for the 
Southern Hemisphere, noting that 77% of all studies were on boreal taxa, whilst biodiversity-rich 
developing nations are lagging in their use of this powerful method. South Africa was listed as 
21st out of the 100 most productive countries in terms of publishing phylogeographic studies, 
with a total of 68 papers at that time. South Africa was also the 4th most productive country in the 
Southern Hemisphere, after Australia, Brazil and New Zealand. In light of the imbalance between 
the North and South, it is timely and appropriate that an assessment of the discipline in southern 
Africa is undertaken. Here we present a synthesis of key findings and a candid look ahead for 
phylogeographic research on marine organisms, which we hope can be used to identify research 
gaps, motivate for new studies and drive new directions, not only in regional, but also global 
marine biological research.

Southern Africa has a long and diverse coastline, comprising rocky and sandy shores, kelp 
forests, estuaries and coral reefs, yet marine phylogeography lags behind phylogeographic 
research on terrestrial biota. Although papers that could be considered to have a phylogeographic 
component were sporadically published during the 1980s11,12 and 1990s,13,14 a concerted effort 
to study the region’s marine biota began less than a decade ago.15,16 In recent years, marine 
phylogeography has primarily been driven by three South African research groups, based at 
Rhodes University, Stellenbosch University and the University of Pretoria. Each group has its 
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own focus: the group at Rhodes University focuses primarily 
on coastal invertebrates, the group at Stellenbosch University 
on coastal and deep-water fishes, commercially exploited 
crustaceans and other coastal invertebrates, and that at the 
University of Pretoria focuses exclusively on commercially 
important fish species. As southern Africa is of great interest 
from a biogeographic point of view because of its location at 
the transition zone between the Atlantic Ocean and Indian 
Ocean biomes, it has also featured prominently in a number 
of key phylogeographic studies with a global focus.17,18 In this 
review, we highlight several areas of research where southern 
African marine organisms have featured prominently, 
identify significant gaps in terms of both sampling design 
and technical aspects, and discuss how these shortcomings 
can be addressed in the near future.

Coastal phylogeography
Of the different fields of marine phylogeography that are 
being studied in southern Africa, coastal phylogeography 
can be considered the one about which we know most. Since 
2000, 23 papers dealing with the phylogeography of coastal 
taxa have been published and several more are either in 
press or in preparation. Papers authored by South African 
researchers understandably dominate the literature; access to 
coastal sites is easy, sampling is relatively simple and cheap, 
and usually many samples can be obtained in a short period 
of time. A recent review paper examined the phylogeographic 
patterning of southern African coastal taxa19 and some of the 
general trends identified are briefly discussed below. 

Location of coastal phylogeographic breaks
Most coastal species are divided into regionally confined 
genetic lineages whose distributions in many cases are linked 
with southern Africa’s marine biogeographic provinces.20,21 
Phylogeographic breaks separating such lineages have been 
identified in three regions (Figure 1).19

On the south-west coast, phylogeographic breaks that 
coincide with the biogeographic disjunction between cool-
temperate and warm-temperate biota22 have been reported 
near Cape Point23,24 and Cape Agulhas.25,26 The region 
between these sites is sometimes considered a transition 
zone,27 and several species have phylogeographic breaks 
at both sites, with distinct lineages that are endemic to this 
transition zone.20,23

Phylogeographic breaks on the south-east coast, at the 
disjunction between warm-temperate and subtropical 
biota,22 have been difficult to define because their exact 
locations differ considerably for different species, and, in 
some, there is considerable overlap of genetic lineages.23,28 
The continental shelf in this region gradually widens from 
north to south, deflecting the warm Agulhas Current away 
from the coast, limiting its influence on coastal biota (Figure 
1).29 The northernmost breaks in this region have been 
identified on the Central Wild Coast (Transkei region)20,30 and 
the southernmost breaks were reported near Algoa Bay.24,31

The third area where phylogeographic breaks have been 
identified coincides approximately with the transition zone 
between subtropical and tropical biotas on the east coast;32 
some species have phylogeographic breaks in north-eastern 
South Africa near St Lucia21,33 and others have breaks farther 
north in Mozambique.34,35

An important finding is that not all species that occur in more 
than one marine biogeographic province exhibit genetic 
structure, and those that do need not have phylogeographic 
breaks at the same localities. Some species are not genetically 
structured across one or more biogeographic disjunctions,20 
and several taxa show no genetic structuring along their 
entire ranges.36,37 In addition, several species with low 
capacity for dispersal exhibit phylogeographic breaks that 
do not coincide with present-day marine biogeographic 
disjunctions,20,23 suggesting that in these, historical patterns 
are retained by limited gene flow.38 Also, although planktonic 
dispersers usually do not have any phylogeographic breaks 
within marine biogeographic provinces, this does not 
necessarily imply that all are panmictic within provinces. 
Whilst panmixia has been identified in a highly philopatric 
coastal fish that disperses primarily by means of planktonic 
larvae,37 significant genetic structure was found in the brown 
mussel, Perna perna.39 Populations of this species residing in 
different bays in the warm-temperate province were not only 
genetically distinct from each other on the basis of differences 
in haplotype frequencies, but they were also distinct from 
populations on the open coast.

Page 2 of 11

Source: SST image, Marine Research Institute, University of Cape Town

FIGURE 1: Southern African oceanography and location of coastal 
phylogeographic breaks. The region is dominated by two boundary currents: 
the warm, southward-flowing Agulhas Current on the south-east coast, 
and the cold, northward-flowing Benguela Current on the west coast. The 
region can be divided into four major marine biogeographic provinces – cool 
temperate, warm temperate, subtropical and tropical – each of which has its 
own assemblage of species. Coastal phylogeographic breaks between provinces 
have been identified at three major localities that in most cases coincide with 
the disjunctions between the provinces: south-west coast (westernmost – Cape 
Point, easternmost – Cape Agulhas), south-east coast (southernmost – Algoa 
Bay, northernmost – Wild Coast) and northern east coast (St Lucia). 
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Maintenance of coastal phylogeographic breaks
Even though many of southern Africa’s coastal species 
have high dispersal potential because of well-developed 
locomotory abilities and/or extended planktonic dispersal 
phases, phylogeographic breaks are often surprisingly 
abrupt. By linking oceanography with life history, it should be 
possible to establish the relative importance of the interacting 
factors that contribute to population genetic structuring 
and population connectivity.40 Hypotheses explaining how 
distinct genetic patterns are maintained fall into two major 
categories, (1) genetic lineages are separated by barriers that 
limit dispersal and (2) regional genetic lineages are adapted 
to the environmental conditions characteristic of their marine 
biogeographic province and in many cases are unable to 
establish themselves in adjacent provinces.

Oceanic dispersal barriers
Proposed dispersal barriers that limit mixing of adjacent 
genetic lineages include upwelling cells,17 river discharge,14 
coastal currents or eddies30,41 and even a coastal dunefield.20

Cold-water upwelling: Numerous studies on marine species 
have indicated that cold-water upwelling can represent 
a strong dispersal barrier.17,42 On the South African west 
coast, some coastal species have gaps in their distribution 
across a region with strong, persistent upwelling that may 
extend over hundreds of kilometres (e.g. the mussel Perna 
perna)28 and dispersal of marine organisms from the Indian 
Ocean into the Atlantic Ocean is limited.18,43 Some marine 
species show high levels of differentiation on the west coast 
(unpublished data), whilst in other studies, the same genetic 
lineages were identified on either side of the cold-water 
barrier,28,44 suggesting that in these, divergence was either 
very recent or that populations on either side are connected 
by ongoing gene flow. Whether genetic disjunctions on the 
west coast are solely linked to upwelling cells or whether 
local oceanographic features such as eddies retain larvae in 
their natal environments has yet to be examined.

Freshwater discharge: On the south-east coast, freshwater 
discharge from the Mbashe River has been invoked as a 
dispersal barrier that prevents mixing of subtropical and 
temperate biota.14 However, in many invertebrate species, 
the phylogeographic breaks in this region are not located 
near this river.4,30 It remains to be tested whether larger rivers, 
such as the Tugela or the Gariep, represent dispersal barriers 
that limit dispersal of marine organisms along the coast.

Currents: Currents may represent dispersal barriers when 
water and larvae are mostly displaced offshore, away from 
suitable habitat in which to settle.45 The trajectories of drifters 
released on the South African south and east coasts showed 
remarkably little overlap.41 None of the drifters released on 
the south coast moved close to the east coast, and drifters 
released on the east coast eventually became entrained 
in the Agulhas Current and were moved hundreds of 
kilometres offshore. This suggests that large-scale regional 
hydrodynamics significantly reduce mixing between the 

temperate and subtropical biotas. However, drifters were 
released several kilometres offshore, so it is likely that wind-
driven inshore currents facilitate some northward dispersal 
on the south-east coast, which would explain the presence 
of the temperate lineages of some coastal invertebrates as far 
north as the central Wild Coast (Figure 1).26,30 Indeed, in an 
experiment using plastic drift cards, it was found that twice 
as many cards were retained in this region compared to 
cards released from two sites on the east coast, the majority 
of which were caught in the Agulhas Current.46

Genetic methods of analysing the strength and directionality 
of gene flow represent a useful additional tool for studying 
the role of currents in dispersal. They estimate long-term 
trends and only incorporate information from individuals 
that have dispersed and recruited successfully. 

Broad-scale patterns from the different biogeographic 
areas show the influence of the major current systems on 
dispersal, and the evidence points to the importance of 
the interplay of the duration of larval dispersal with local 
current regimes. Four major gene-flow scenarios have been 
identified, (1) strong northward flow on the west coast with 
the Benguela Current, (2) strong southward flow on the east 
coast with the Agulhas Current, (3) some bidirectional gene 
flow inshore of the Agulhas Current on the south-east coast 
and (4) bidirectional gene flow on the south coast. These are 
discussed in more detail below.

The west coast, which is dominated by the northward-
flowing Benguela Current, shows the strongest signal of 
asymmetrical or unidirectional gene flow patterns.24 Very 
little information on gene flow is available from the east coast, 
but the limited data there are support the idea that long-
distance dispersal is mostly facilitated by the southward-
flowing Agulhas Current.23

On the south and south-east coasts, migration is not as clear. 
In the barehead goby, Caffrogobius caffer, gene flow was 
shown to be predominantly with the Agulhas Current,36 but 
in another rocky shore fish, the bluntnose klipfish (Clinus 
cottoides), most gene flow occurred in the opposite direction.24 
In invertebrates, bidirectional gene flow was identified on the 
south coast, with more eastward than westward dispersal,23 
and gene flow on the south-east coast was also bidirectional, 
indicating that much dispersal takes place by means of 
nearshore currents.30 Together, these somewhat contradictory 
examples illustrate why life history plays an important role 
in determining population genetic structuring. For example, 
like many other gobioid fishes, C. caffer probably has a long 
larval dispersal phase47 whereas adult fishes are confined to 
high-shore rock pools and probably do not disperse at all.48 
Dispersal is therefore only by larvae that make use of the 
Agulhas Current. In contrast, clinid fishes have extremely 
limited larval dispersal and it is highly unlikely that young 
fish are able to disperse by means of the offshore Agulhas 
Current, but likely rather use the inshore Agulhas counter-
current for dispersal.24 Further evidence for counter-current 
driven dispersal comes from the eastward range expansion of 
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the invasive Mediterranean mussel, Mytilus galloprovincialis.49 
It is also likely that strengthening of the current during the 
winter months facilitates the annual sardine run in South 
Africa.50

Dunefields: Dunefields seem to be an unlikely dispersal 
barrier for marine species, but their importance has also been 
documented elsewhere.51 A possible explanation is that, in 
addition to coastal dunefields representing long stretches 
of unsuitable habitat for rocky shore and estuarine species, 
regions where these are located are characterised by strong, 
persistent onshore winds, which may limit long-shore 
dispersal of plankton in the surface water.

Province-specific adaptations
Although there is little doubt that dispersal barriers limit 
gene flow between provinces, many can be considered to 
be incomplete. For example, many upwelling cells affect the 
surface waters for only short periods of time,52 and many 
wind patterns (such as the shoreward south-easterly) are 
seasonal.53 Maintenance of genetic structure in the absence 
of strong dispersal barriers is possible only when levels of 
selection are high.54 An alternative hypothesis explaining the 
maintenance of coastal phylogeographic breaks suggests that 
although many species can reach adjacent provinces, they do 
not establish themselves permanently, either because they are 
ill-adapted to local environmental conditions or because they 
are outcompeted by their sister taxa. Adaptation of genetic 
lineages to environmental conditions that differ between 
provinces has been documented in several recent studies. The 
larvae of the subtropical lineage of the mudprawn, Upogebia 
africana, cannot survive the colder water temperatures that 
are typical of the temperate province during winter (Figure 
2).30 This observation suggests that, even though they 
can potentially settle outside their own province during 
summer,23 they are unable to establish themselves in the 
temperate provinces. Differences in osmoregulatory abilities 
of warm-temperate and subtropical lineages of the estuarine 
sandprawn, Callianassa kraussi, may reflect adaptation to 
differences in the salinities of the estuaries of each region, and 
therefore limit dispersal of each genetic lineage into adjacent 
provinces.21 Lastly, the fact that the temperate lineage of the 
brown mussel, Perna perna, is less tolerant of sand inundation 
and high temperatures than its subtropical sister lineage may 
partly explain its absence from the east coast.41

Origin of coastal phylogeographic breaks
Most studies on southern African coastal taxa that describe 
phylogeographic breaks limit themselves to suggesting 
factors that are likely to maintain them. Explaining how such 
patterns have arisen is proving more challenging. Molecular 
dating indicates that coastal phylogeographic breaks are the 
result of historical processes that precede the beginning of 
the present interglacial period.20,55 However, such estimates 
are mostly based on few loci, which limits accuracy, and the 
markers used may not provide sufficient resolution to detect 
very recent divergence events (discussed below). The ages 
of congruent genetic disjunctions may differ considerably for 
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lineages as a function of temperature. 
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different species, and genetic differentiation between sister 
lineages in adjacent provinces may range from differences 
in haplotype frequencies in recently diverged lineages24,34 to 
lineages being so distinct that each can be considered to be a 
distinct species.21,33 For example, divergence time estimates 
that were based on more than one locus indicated that in 
the brachyuran crown crab species complex, Hymenosoma 
orbiculare, a split into temperate and subtropical lineages 
occurred at least 16 million years ago,4 whereas congruent 
regional genetic units of the clinid fish C. cottoides diverged 
as recently as 60 000 years ago.24

In contrast to south-eastern Australia56 or Indonesia,57 there 
are no geological features in southern Africa that could have 
acted as land bridges during episodes of low sea level and 
that could have completely isolated populations of coastal 
taxa. There is consequently no compelling evidence for 
any geological vicariance events along the coast that could 
have driven simultaneous divergence in multiple species. 
The region’s coastal morphology nonetheless changed 
considerably as a result of climate oscillations during the 
Pleistocene. For example, during the Last Glacial Maximum 
(26 500 – 19 000 years ago),58 when the sea level was about 
120  m lower than it is today,59 large areas of continental 
shelf were exposed, particularly south of Cape Agulhas.60 

Also, the region’s sea surface temperatures cooled as a result 
of intensified upwelling on the west coast61 and a reduced 
influence of the Agulhas Current.62 How these changes may 
have affected habitat availability and the amount of gene 
flow along the coast is poorly understood, but the role of 
oceanic dispersal barriers (discussed in the previous section) 
in driving the evolution of regional lineages needs to be 
assessed in this context. The exposure of the Agulhas Bank 
during the Last Glacial Maximum resulted in the southern 
tip of Africa being about 200 km south of where it is today, 
and, in combination with colder water temperatures in the 
region during that time, this may have presented a cold-
water dispersal barrier similar to that on the west coast. 
The Agulhas Current weakened during glacial phases and 
may have ceased to flow during winter,62 suggesting that 
advection of larvae away from the coast would have been 
considerably reduced, with stronger bidirectional longshore 
dispersal by means of nearshore currents. This possibility 
suggests that the role of the Agulhas Current in limiting 
mixing of regional biotas may never have been substantially 
more important than it is today. The fact that species from 
the east coast can temporarily establish themselves in 
the eastern portion of the temperate province during the 
summer months63 indicates that, even today, it represents a 
highly permeable barrier. The same can be said of upwelling 
cells and the freshwater plumes of large rivers. Also, some 
dispersal barriers have formed more recently than the 
genetic lineages they separate,20 suggesting that they only 
contribute towards maintaining genetic structure that was 
already present. Population genetic theory suggests that 
even a small amount of migration between populations will 
prevent genetic divergence by drift,64 which indicates that 
southern Africa’s historical oceanic dispersal barriers may be 
insufficient to explain the origin of marine phylogeographic 
breaks.

The association of genetic lineages with marine biogeographic 
provinces could point to ecological factors driving genetic 
divergence. Two recent studies have indicated that 
divergence could be driven by climate oscillations. In the 
first study, a range expansion from the south-east coast to 
the south-west coast that occurred during the previous 
interglacial period (~120 000 years ago) was identified in the 
coastal snail Nassarius kraussianus by means of coalescent-
based molecular dating of mitochondrial DNA (mtDNA) 
sequence data (Figure  3).31 Westward range expansions 
of warm-water molluscs during this period are well 
documented in the fossil record.65 However, in contrast to 
other coastal molluscs, subsequent climatic cooling did not 
result in a range contraction in N. kraussianus, whose shells 
were used as ornaments by humans living on the south-
west coast during the last glacial period.66 This lack of range 
contraction suggests that the species’ western populations 
adapted to cooler water. The species is today represented 
by a younger temperate lineage and a more ancient lineage 
that occurs in the subtropical and tropical provinces, with a 
phylogeographic break located near Algoa Bay (Figure  1). 
Congruent but much older divergence events that could be 
linked to range expansions during warm climatic phases, 
followed by adaptation and speciation during cooler phases, 
have also been reported in the Hymenosoma orbiculare species 
complex using multilocus DNA sequence data.4

Ecological divergence scenarios linked to climate oscillations 
may explain why divergence times differ considerably 
amongst species with congruent phylogeographic breaks. 
Although most species may undergo range expansions 
in response to shifting boundaries between marine 
biogeographic provinces as a result of climate oscillations,65 
adaptations to unfavourable environmental conditions 
during a particular range shift may only have arisen in a 
small fraction of the species affected, whilst the ranges of 
most others would have contracted.

Offshore marine phylogeography
Genetic studies of offshore populations are rare compared to 
coastal species. This difference can be ascribed to a number 
of factors, including the expense of obtaining samples, the 
lack of taxonomic expertise for some groups, and the lack of 
inclusion in multinational, large-scale research programmes. 
Research initiatives such as the Western Indian Ocean Marine 
Science Association, the Agulhas and Somali Current Large 
Ecosystem Project and the African Coelacanth Ecosystem 
Programme should have boosted such research, but, to 
date, little research from such initiatives has been published. 
There is considerable room for scientists working in southern 
Africa to expand into offshore phylogeographic studies, and 
perhaps some national strategy in this regard should be 
developed.

Recent offshore marine phylogeographic studies in southern 
Africa have primarily focused on commercially exploited 
species, with special emphasis on the Cape hakes that 
comprise the most important demersal fisheries resource 
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in South Africa and Namibia. The major focus regarding 
offshore stocks is on transboundary management between 
Namibian and South African fish stocks. Interestingly, there 
appears to be genetic structure in the deep-water hake, 
Merluccius paradoxus,55,67 between Namibia and South Africa, 
as well as between individuals within South Africa. However, 
as M. paradoxus was shown to only have population genetic 
structuring with adult fishes and no structure for juvenile non-
spawning fish,67 the focus to date has been on understanding 
the structuring of adult fishes. One study has examined the 
distribution of the eggs and larvae of M. paradoxus and those 
of its shallow-water sister taxon M. capensis (which in the 
early stages are morphologically identical) and found that 
spawning depth differs signficantly, but that most larvae 
of a certain size are found on the continental shelf at depths 
of about 200 m.68 Several other studies have used molecular 
techniques on offshore marine species in southern Africa; for 
example, the lanternfish, Lampanyctodes hectoris, showed no 
significant genetic differentiation between South African and 
Namibian stocks.69 There also appears to be no differentiation 
in the squid Loligo vulgaris between disparate spawning areas 
in South Africa.70 In contrast, horse mackerels, Trachurus 
capensis, show slight differentiation between Namibia and 
South Africa based on allozyme loci.11 Preliminary research 
using allozymes also suggested slight stock differentiation of 
orange roughy, Hoplostethus atlanticus, in Namibian waters.71

There have also been a number of studies on commercially 
important crustaceans, in particular rock lobsters of the 
genera Jasus and Palinurus. These have primarily focused 

on understanding population genetic structuring and 
demographic changes of lobster species in the region. Even 
though lobsters have extended planktonic dispersal phases, 
some genetic structuring between sampling areas was 
recovered for the Tristan rock lobster, Jasus tristani,72 and for 
the Natal deep-sea lobster, Palinurus delagoae, which exhibits 
shallow but significant structuring between Mozambican 
and South African populations.34 In the most important 
commercially exploited crustacean in South Africa, the west-
coast rock lobster, Jasus lalandii, genetic diversity is highest 
on the south-west coast and decreases towards the edge of 
the species’ distribution.73 In contrast, the south-coast rock 
lobster, Palinurus gilchristi, shows no population genetic 
structuring along its range.74

Southern Africa and beyond
Indo-West Pacific phylogeography
Many marine organisms with high dispersal potential have 
long been considered to have distributions incorporating 
the entire Indian Ocean whereas the presence of temperate 
low-dispersal species in southern Africa and Australasia 
has traditionally been attributed to morphological stasis in 
Gondwanan relics that diverged as a result of the break-up 
of the ancient supercontinent. Both paradigms have been 
challenged by genetic studies. Large-scale phylogeographic 
studies have indicated that the populations of many marine 
organisms can be divided into lineages that are confined to 
the western Indian Ocean and lineages that are associated 
with the eastern Indian Ocean and/or the West Pacific.75,76 A 
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recent study on fish species that occur both in southern Africa 
and in Australia indicated that, although there is little genetic 
structure in pelagic species, many inshore species are highly 
divergent between the regions. This study suggests that a 
third of the nearly 1000 fish species that occur in both regions 
may include cryptic species.77 Molecular dating further 
indicates that many of the low-dispersal species thought 
to be Gondwanan relics diverged long after the break-up 
of the supercontinent, and post-Gondwanan transoceanic 
dispersal is considered to be a more appropriate hypothesis 
explaining the observed sister-taxon relationships.78 
Colonisation of Australia from southern Africa via the west 
wind drift has been proposed for low dispersal species,78 but 
colonisation patterns of highly dispersed taxa are not yet 
fully understood.79

Coastal phylogeography in the western Indian 
Ocean
Despite the importance of the western Indian Ocean as a 
biodiversity hotspot and several major research initiatives, 
the region’s phylogeography remains poorly explored. The 
majority of phylogeographic studies dealing with marine 
species from the western Indian Ocean have included samples 
from South Africa only.28,80 Studies that included samples 
from other western Indian Ocean countries have mostly 
compared large-scale genetic structure between the western 
and eastern Indian Ocean, or throughout the Indo-West 
Pacific.75,81 Very few studies have focused on genetic structure 
and gene flow along the East African coast, or between the 
African mainland and the region’s islands. In those that 
have, low sample sizes and the inclusion of just a handful 
of sampling sites have made inferences about the location of 
phylogeographic breaks and levels of gene flow throughout 
the region problematic,82,83 a notable exception being a 
recent study of the fiddler crab, Uca annulipes.84 An earlier 
attempt at summarising what few data there are suggested 
that genetic structure in the western Indian Ocean exists 
mostly at tropical locations, whereas south-eastern African 
marine populations lacked genetic structure,85 a trend that 
was rejected by several more recent studies.34,35 To date, most 
of the phylogeographic studies that have employed a fine-
scale sampling approach, and that have not dealt exclusively 
with South African fauna, involved extensive sampling in 
South Africa plus some additional Mozambican sites.33,35 
Even these studies have suffered from the problem of large 
gaps between the South African and Mozambican sites. To 
study the phylogeography of the western Indian Ocean more 
comprehensively requires that the level of sampling that has 
proven so useful to detect genetic structure in temperate and 
subtropical South Africa be extended to the tropical regions 
to the north-east. However, the size of this region, and the 
logistical difficulties involved in reaching sampling sites, will 
require not only substantial funding, but also a strengthening 
of collaborations amongst researchers from different western 
Indian Ocean countries.

Antitropical distributions in the eastern Atlantic 
Ocean
Several temperate southern African marine animals have 
sister-taxon relationships with species in the temperate 

north-eastern Atlantic. Examples include hake (Merluccius 
spp.),86 anchovies (Engraulis spp.),87 krill (Nyctiphanes spp.),88 
Octopus vulgaris,89 spiny lobsters (Palinurus spp.)90 and 
intertidal ascidians (Pyura herdmani).91 Although it is possible 
that some of these disjunct distributions are the result of 
recent human-mediated transport from one region to the 
other, molecular dating indicates that most divergence events 
considerably predate the historical period. This suggests that 
migrants must have crossed the highly significant dispersal 
barrier represented by warm equatorial waters to establish 
themselves successfully. The findings to date indicate that 
the dispersal direction may differ amongst taxa. Whereas 
dispersal in Nyctiphanes spp. and P. herdmani was most likely 
from southern Africa to the north-eastern Atlantic, Merluccius 
spp., Engraulis spp. and Palinurus spp. most likely originated 
in the Northern Hemisphere.

Genetic markers used in marine 
phylogeography
Mirroring a global trend in phylogeographic research,10 the 
majority of studies on southern African marine organisms 
have used mtDNA sequence data, with the cytochrome oxidase 
c subunit I gene being particularly popular. The reason for 
this is obvious – the primers for this marker are ‘universal’ 
and can be used for a wide variety of taxa. However, there 
are numerous disadvantages to using mtDNA exclusively, 
including that with a few exceptions, it is only inherited 
in the female line and is thus unsuitable for the study of 
hybridisation or reproductive isolation amongst different 
genetic lineages, and that molecular dating based on a single 
marker is less accurate than dating based on multilocus 
data.92

Several recent studies have used nuclear sequence data such 
as nuclear genes, introns or ribosomal RNAs in conjunction 
with mtDNA, and congruent genetic patterns were recovered 
for the two types of genetic markers.24,33 These studies have 
so far rejected the notion that in species with low dispersal 
potential, haphazard genetic structure can readily arise in 
the absence of any underlying environmental factors.93 To 
researchers who have exclusively used mtDNA sequence data 
until now, introns are likely to become the nuclear marker of 
choice. Not only are similar skills required in terms of data 
generation and interpretation, but the information content 
of introns is similar to that of mtDNA. Recent software 
developments for phasing the two sequences superimposed 
onto each other in trace files generated from heterozygous 
individuals94,95 have rendered tedious cloning unnecessary, 
and a number of universal96 and taxon-specific33,97,98 primer 
sets have been developed. In non-model organisms for which 
no suitable primers are available for amplifying introns, the 
development of anonymous nuclear markers99 may be a 
suitable alternative.

Whilst DNA sequence data from mtDNA or nuclear markers 
have proven suitable for detecting phylogeographic breaks 
and identifying cryptic speciation, they are of limited use in 
the study of very recently evolved genetic patterns, such as 
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those that formed during or after the Last Glacial Maximum, 
or those that formed during historical times. Microsatellites 
(also known as short tandem repeats) are excellent markers for 
the study of such recent evolutionary events because of their 
high mutation rate. Even though a number of microsatellite 
libraries have been developed specifically for South African 
marine organisms, particularly for teleosts,100,101,102,103 we are 
aware of only four research papers that have actually used 
these markers to study marine phylogeography in southern 
Africa.25,35,37,104

Other types of genetic markers with considerable potential 
for the elucidation of marine phylogeography have yet to be 
used in southern Africa. For example, amplified fragment 
length polymorphism (AFLP) is now firmly established 
as a genetic marker for terrestrial plants,105 but we are not 
aware of any studies on southern African algae, seagrasses 
or mangroves that have used them, and their use in animals 
is so far limited to aquaculture.106

Where to from here?
Although there are substantial data on some aspects of 
marine phylogeography in southern Africa, other aspects 
require further attention. Firstly, despite considerable insight 
into marine phylogeographic breaks gained during the past 
decade, two regions have not received sufficient attention. 
In the tropical north-east, phylogeographic breaks in species 
with low dispersal potential were identified near St Lucia,21,33 
and several planktonic dispersers have phylogeographic 
breaks in southern Mozambique.34,35 Because of logistical 
difficulties in accessing sites, there were large gaps between 
sampling sites in all studies focusing on this region, and it is 
possible that there is in fact more than one phylogeographic 
break. Even less research has focused on the west coast, 
and more intensive sampling, which also includes sites in 
Namibia and Angola, is needed to better understand genetic 
structuring in this region.19

In terms of the nearshore biota studied, most research has 
so far focused on rocky shore or estuarine species, and 
only two studies have been on sandy shore organisms.13,16 
As sandy beaches make up about 42% of the South African 
shoreline and are a dominant feature particularly on the 
east coast,107 more research efforts should be concentrated 
on understanding the genetic structuring of sandy shore 
organisms.

Surprisingly little phylogeographic research has been 
conducted on commercially important species.37,67,89,104 Given 
that commercially exploited coastal teleosts have primarily 
been used as model taxa to position Marine Protected Areas, 
more phylogeographic research evaluating the current 
Marine Protected Areas network is warranted. In addition, 
the dearth of offshore genetic research demands serious 
attention. In the light of increased commercial, artisanal and 
recreational fishing, as well as possible warming of ocean 
currents in the region,108 it becomes all the more important not 
only to understand population structuring, but also the likely 

evolutionary response of offshore marine species to climatic 
change.55 Phylogeographic studies have also inadvertently 
uncovered cryptic speciation in marine species.109 With 
at least 25% of southern African endemic fishes yet to be 
described,110 it is likely that biodiversity inventories not only 
of fishes, but of all marine taxa will greatly benefit from 
phylogeographic research.

In addition to focusing on neglected taxa and obtaining 
samples from regions where little research has been 
conducted, considerably more effort needs to be placed on 
generating, not only multispecies, but also multilocus genetic 
data sets. In addition to the increased use of nuclear sequence 
data and AFLPs, the development of microsatellite libraries 
needs to be a major focus of southern African marine 
phylogeography in the coming years. As a result of their 
high mutation rate, microsatellites will allow researchers 
to study genetic patterns driven by factors such as fishing 
pressure and climate change, as well as to obtain more 
reliable information on gene flow. For example, migration 
rates estimated using coalescent-based methods such as 
those implemented in MIGRATE-N111 or IMa112 are often 
interpreted as reflecting contemporary gene flow,23,24 but 
they may in fact be strongly influenced by historical events,111 
particularly when they are based on comparatively slowly 
evolving markers such as mtDNA or introns. Microsatellites 
would further allow the identification of cryptic species 
or stocks that have evolved too recently to be detectable 
using DNA sequence data. Recent advances in sequencing 
technology (e.g. 454 pyrosequencing) are likely to make the 
development of microsatellite libraries and single nucleotide 
polymorphism libraries more accessible to southern African 
researchers.

Conclusion
The southern African marine realm is an exceptionally 
interesting environment in which to study evolutionary 
processes. Because it is located at the transition zone between 
the Atlantic Ocean and Indo-Pacific biomes, the region’s 
biodiversity is particularly high. Although South Africa has 
a very active marine biological community and conventional 
marine research is of a high standard, research addressing 
fundamental evolutionary concepts is still poorly developed. 
In the coming years, marine phylogeographic research needs 
to move from being mostly descriptive to becoming more 
analytical. For example, most studies have been limited 
to interpreting phylogeographic patterns on the basis of 
oceanographic data, but it would be desirable to explore 
how marine organisms’ evolutionary histories have shaped 
present-day patterns, which should include testing alternative 
hypotheses of when and how genetic structure evolved.113,114 
Oceanographic research in southern Africa has concentrated 
on offshore features, with an enormous emphasis on the 
economically important Benguela upwelling system,115 and 
to a lesser degree on the Agulhas Current.52 Although recent 
initiatives have begun to address this,116 we have a relatively 
poor understanding of the hydrodynamically complex 
nearshore region that hampers our ability to interpret genetic 
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data from taxa that live in shallow waters and disperse 
within the nearshore arena. In addition, the fact that there is 
strong evidence for adaptive differentiation between recently 
evolved sister lineages in the region’s different marine 
provinces suggests that a greater focus needs to be placed 
on studying selection pressure. In addition to conducting 
physiological studies on evolutionary lineages that have been 
identified using selectively neutral genetic markers, focusing 
on markers that are under selection would greatly improve 
our understanding of the relative importance of dispersal 
barriers and selection gradients in driving the evolution of 
new species. We believe that it is time to put southern Africa 
‘on the map’ as one of the world’s most interesting regions in 
which to study marine phylogeography, and help afford it a 
similar status to that presently occupied by the Cape Floristic 
Kingdom, the African Great Lakes and the terrestrial fauna 
of Madagascar.

Acknowledgements
This review emanates from a workshop on phylogeography 
held at Rhodes University in June 2007. This workshop was 
funded by the National Research Foundation (NRF) of South 
Africa through the South African Biosystematics Initiative 
(SABI) and was attended by 28 South African delegates 
involved in phylogeographic research, including NPB, 
CDM and PRT. The ideas presented here are a consequence 
of discussions held during this workshop, augmented by 
subsequent research findings. We are grateful to J. Field 
for providing the SST map of southern Africa. PRT was 
supported by a Postdoctoral Research Fellowship from 
Rhodes University. SvdH was supported by a Claude Leon 
Postdoctoral fellowship. NPB acknowledges the NRF and 
Rhodes University Joint Research Council for financial 
support. This work is based upon research supported by the 
South African Research Chairs Initiative of the Department 
of Science and Technology and the NRF.

References
1.	 Avise JC. Phylogeography: Retrospect and prospect. J Biogeogr. 2009;36:3–

15. doi:10.1111/j.1365-2699.2008.02032.x

2.	 Hewitt GM. Genetic consequences of climatic oscillations in the 
Quaternary. Phil Trans Roy Soc Lond B. 2004;359:193–195. doi:10.1098/
rstb.2003.1388, PMid:15101575, PMCid:1693318

3.	 Bowen BW, Karl SA. Population genetics and phylogeography of sea 
turtles. Mol Ecol. 2007;16:4886–4907. doi:10.1111/j.1365-294X.2007.03542.x, 
PMid:17944856

4.	 Teske PR, McLay C, Sandoval-Castillo J, et al. Tri-locus sequence data 
reject a “Gondwanan origin hypothesis” for the African/South Pacific crab 
genus Hymenosoma. Mol Phylogenet Evol. 2009;53:23–33. doi:10.1016/j.
ympev.2009.05.031, PMid:19501181

5.	 Rius M, Pascual M, Turon X. Phylogeography of the widespread marine 
invader Microcosmus squamiger (Ascidiacea) reveals high genetic diversity 
of introduced populations and non-independent colonizations. Divers 
Distrib. 2008;14:818–828. doi:10.1111/j.1472-4642.2008.00485.x

6.	 Knowles LL. Statistical phylogeography. Annu Rev Ecol Evol S. 
2009;40:593–612. doi:10.1146/annurev.ecolsys.38.091206.095702

7.	 Hickerson MJ, Carstens BC, Cavender-Bares J, et al. Phylogeography’s 
past, present, and future: 10 years after Avise, 2000. Mol Phylogenet Evol. 
2010;54:291–301. doi:10.1016/j.ympev.2009.09.016, PMid:19755165

8.	 Bermingham E, Moritz C. Comparative phylogeography: Concepts 
and applications. Mol Ecol. 1998;7:367–369. doi:10.1046/j.1365-
294x.1998.00424.x

9.	 Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS. Comparative 
phylogeography of unglaciated eastern North America. Mol Ecol. 
2006;15:4261–4293. doi:10.1111/j.1365-294X.2006.03061.x, PMid:17107465

10.	 Beheregaray LB. Twenty years of phylogeography: The state of the field 
and the challenges for the southern hemisphere. Mol Ecol. 2008;17:3754–
3774. PMid:18627447

11.	 Zenkin VS, Komarov YA. Genetic differentiation in the Cape horse 
mackerel (Trachurus trachurus capensis Castelnau) population. Colln scient 
pap Int Comm SE Atl Fish. 1981;8:291–298.

12.	 Becker II, Grant WS, Kirby R, Robb FT. Evolutionary divergence between 
sympatric species of southern hakes, Merluccius capensis and M. paradoxus. 
II. Restriction enzyme analysis of mitochondrial DNA. Heredity. 
1988;61:21–30. doi:10.1038/hdy.1988.87

13.	 Grant WS, Da Silva-Tatley FM. Lack of genetically-subdivided population 
structure in Bullia digitalis, a southern African marine gastropod with 
lecithotrophic development. Mar Biol. 1997;129:123–137. doi:10.1007/
s002270050153

14.	 Ridgway TM, Stewart BA, Branch GM, Hodgson AM. Morphological 
and genetic differentiation of Patella granularis (Gastropoda: Patellidae) 
along the coast of South Africa. J Zool Lond. 1998;245:317–333. 
doi:10.1111/j.1469-7998.1998.tb00107.x

15.	 Teske PR, Matthee CA, Cherry MI. Population genetics of the endangered 
Knysna seahorse, Hippocampus capensis. Mol Ecol. 2003;12:1703–1715. 
doi:10.1046/j.1365-294X.2003.01852.x, PMid:12803625

16.	 Laudien J, Flint NS, Van der Bank FH, Brey T. Genetic and morphological 
variation in four populations of the surf clam Donax serra (Röding) from 
southern African sandy beaches. Biochem Syst Ecol. 2003;31:751–772. 
doi:10.1016/S0305-1978(02)00252-1

17.	 Lessios HA, Kane J, Robertson DR. Phylogeography of the pantropical sea 
urchin Tripneustes: Contrasting patterns of population structure between 
oceans. Evolution. 2003;57:2026–2036. doi:10.1554/02-681, PMid:14575324

18.	 Rocha LA, Robertson DR, Rocha CR, Van Tassell JL, Craig MT, Bowen 
BW. Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef 
fish. Mol Ecol. 2005;14:3921–3928. doi:10.1111/j.1365-294X.2005.02698.x, 
PMid:16262848

19.	 Von der Heyden S. Why do we need to integrate population genetics into 
South African marine protected area planning? Afr J Mar Sci. 2009;31:263–
269. doi:10.2989/AJMS.2009.31.2.14.886

20.	 Teske PR, McQuaid CD, Froneman PW, Barker NP. Impacts of marine 
biogeographic boundaries on phylogeographic patterns of three South 
African estuarine crustaceans. Mar Ecol Prog Ser. 2006;314:283–293. 
doi:10.3354/meps314283

21.	 Teske PR, Winker H, McQuaid CD, Barker NP. A tropical/subtropical 
biogeographic disjunction in southeastern Africa separates two 
evolutionary significant units of an estuarine prawn. Mar Biol. 
2009;156:1265–1275. doi:10.1007/s00227-009-1168-3

22.	 Emanuel BP, Bustamante RH, Branch GM, Eekhout S, Odendaal FJ. 
A zoogeographic and functional approach to the selection of marine 
reserves on the west coast of South Africa. S Afr J Mar Sci. 1992;12:341–
354. doi:10.2989/02577619209504710

23.	 Teske PR, Papadopoulos I, Zardi GI, et al. Implications of life history for 
genetic structure and migration rates of five southern African coastal 
invertebrates: Planktonic, abbreviated and direct development. Mar Biol. 
2007;152:697–711. doi:10.1007/s00227-007-0724-y

24.	 Von der Heyden S, Prochazka K, Bowie RCK. Significant population 
structure and asymmetric gene flow patterns amidst expanding 
populations of Clinus cottoides (Perciformes, Clinidae): Application of 
molecular data to marine conservation planning in South Africa. Mol Ecol. 
2008;17:4812–4826. doi:10.1111/j.1365-294X.2008.03959.x, PMid:19140974

25.	 Evans BS, Sweijd NA, Bowie RCK, Cook PA, Elliott NG. Population 
genetic structure of the perlemoen, Haliotis midae in South Africa: Evidence 
of range expansion and founder events. Mar Ecol Prog Ser. 2004;270:163–
172. doi:10.3354/meps270163

26.	 Teske PR, Froneman PW, McQuaid CD, Barker NP. Phylogeographic 
structure of the caridean shrimp Palaemon peringueyi in South Africa: 
Further evidence for intraspecific genetic units associated with marine 
biogeographic provinces. Afr J Mar Sci. 2007;29:253–258. doi:10.2989/
AJMS.2007.29.2.9.192

27.	 Bolton JJ, Anderson RJ. Marine vegetation. In: Cowling RM, Richardson 
DM, Pierce SM, editors. Vegetation of southern Africa. Cambridge: 
Cambridge University Press, 1997; p. 348–375.

28.	 Zardi GI, McQuaid CD, Teske PR, Barker NP. Unexpected genetic structure 
of indigenous (Perna perna) and invasive (Mytilus galloprovincialis) mussel 
populations in South Africa. Mar Ecol Prog Ser. 2007;337:135–144. 
doi:10.3354/meps337135

29.	 Heydorn AEF, Bang ND, Pearce AF, et al. Ecology of the Agulhas 
Current region: An assessment of biological responses to environmental 
parameters in the south-west Indian Ocean. Trans Roy Soc S Afr. 
1978;43:151–190. doi:10.1080/00359197809520235

30.	 Teske PR, Papadopoulos I, Newman BK, Dworschak PC, McQuaid CD, 
Barker NP. Oceanic dispersal barriers, adaptation and larval retention: 
An interdisciplinary assessment of potential factors maintaining a 
phylogeographic break between sister lineages of an African prawn. 
BMC Evol Biol. 2008;8:834. doi:10.1186/1471-2148-8-341, PMid:19108720, 
PMCid:2628387

31.	 Teske PR, Papadopoulos I, Newman BK, McQuaid CD, Barker NP. Climate 
change, genetics or human choice: Why were the shells of mankind’s 
earliest ornament larger in the Pleistocene than in the Holocene? PLoS 
ONE. 2007;2:e614.

51

http://dx.doi.org/10.1111/j.1365-2699.2008.02032.x
http://dx.doi.org/10.1098/rstb.2003.1388
http://dx.doi.org/10.1098/rstb.2003.1388
http://dx.doi.org/10.1111/j.1365-294X.2007.03542.x
http://dx.doi.org/10.1016/j.ympev.2009.05.031
http://dx.doi.org/10.1016/j.ympev.2009.05.031
http://dx.doi.org/10.1111/j.1472-4642.2008.00485.x
http://dx.doi.org/10.1146/annurev.ecolsys.38.091206.095702
http://dx.doi.org/10.1016/j.ympev.2009.09.016
http://dx.doi.org/10.1046/j.1365-294x.1998.00424.x
http://dx.doi.org/10.1046/j.1365-294x.1998.00424.x
http://dx.doi.org/10.1111/j.1365-294X.2006.03061.x
http://dx.doi.org/10.1038/hdy.1988.87
http://dx.doi.org/10.1007/s002270050153
http://dx.doi.org/10.1007/s002270050153
http://dx.doi.org/10.1111/j.1469-7998.1998.tb00107.x
http://dx.doi.org/10.1046/j.1365-294X.2003.01852.x
http://dx.doi.org/10.1016/S0305-1978%2802%2900252-1
http://dx.doi.org/10.1554/02-681
http://dx.doi.org/10.1111/j.1365-294X.2005.02698.x
http://dx.doi.org/10.2989/AJMS.2009.31.2.14.886
http://dx.doi.org/10.3354/meps314283
http://dx.doi.org/10.1007/s00227-009-1168-3
http://dx.doi.org/10.2989/02577619209504710
http://dx.doi.org/10.1007/s00227-007-0724-y
http://dx.doi.org/10.1111/j.1365-294X.2008.03959.x
http://dx.doi.org/10.3354/meps270163
http://dx.doi.org/10.2989/AJMS.2007.29.2.9.192
http://dx.doi.org/10.2989/AJMS.2007.29.2.9.192
http://dx.doi.org/10.3354/meps337135
http://dx.doi.org/10.1080/00359197809520235
http://dx.doi.org/10.1186/1471-2148-8-341


S Afr J Sci  2011;107(5/6)  http://www.sajs.co.za

Review ArticlePage 10 of 11

32.	 Bolton JJ, Leliaert F, de Clerck O, et al. Where is the western limit of the 
tropical Indian Ocean seaweed flora? An analysis of intertidal seaweed 
biogeography on the east coast of South Africa. Mar Biol. 2004;144:51–59. 
doi:10.1007/s00227-003-1182-9

33.	 Teske PR, Barker NP, McQuaid CD. Lack of genetic differentiation among 
four sympatric southeast African intertidal limpets (Siphonariidae): 
Phenotypic plasticity in a single species? J Molluscan Stud. 2007;73:223–
228. doi:10.1093/mollus/eym012

34.	 Gopal K, Tolley KA, Groeneveld JC, Matthee CA. Mitochondrial 
DNA variation in spiny lobster Palinurus delagoae suggests genetically 
structured populations in the southwest Indian Ocean. Mar Ecol Prog Ser. 
2005;319:191–198. doi:10.3354/meps319191

35.	 Ridgway T, Riginos C, Davis J, Hoegh-Guldenberg O. Genetic connectivity 
patterns of Pocillopora verrucosa in southern African Marine Protected 
Areas. Mar Ecol Prog Ser. 2008;354:161–168. doi:10.3354/meps07245

36.	 Neethling M, Matthee CA, Bowie RCK, Von der Heyden S. Evidence for 
panmixia despite barriers to gene flow in the southern African endemic, 
Caffrogobius caffer (Teleostei: Gobiidae). BMC Evol Biol. 2008;8:325. 
doi:10.1186/1471-2148-8-325, PMid:19040766, PMCid:2613416

37.	 Teske PR, FRG Forget, Cowley PD, Von der Heyden S, Beheregaray 
LB. Connectivity between marine reserves and exploited areas in the 
philopatric reef fish Chrysoblephus laticeps (Teleostei: Sparidae). Mar Biol. 
2010;157:2029–2042. doi:10.1007/s00227-010-1471-z

38.	 Pelc RA, Warner RR, Gaines SD. Geographical patterns of genetic 
structure in marine species with contrasting life histories. J Biogeogr. 
2009;36:1881–1890. doi:10.1111/j.1365-2699.2009.02138.x

39.	 Nicastro KR, Zardi GI, McQuaid CD, Teske PR, Barker NP. Coastal 
topography drives genetic structure in marine mussels. Mar Ecol Prog Ser. 
2008;368:189–195. doi:10.3354/meps07607

40.	 Carson HS, López-Duarte MP, Rasmussen L, Wang D, Levin LA. 
Reproductive timing alters population connectivity in marine 
metapopulations. Curr Biol. 2010;20:1926–1931. doi:10.1016/j.
cub.2010.09.057, PMid:20951048

41.	 Zardi GI, Nicastro KR, McQuaid CD, Hancke L, Helmuth B. The 
combination of selection and dispersal helps explain genetic structure in 
intertidal mussels. Oecologia. 2011;165:947–958. doi:10.1007/s00442-010-
1788-9, PMid:20878422

42.	 Olivares Banuelos NC, Enriquez-Paredes LM, Ladah LB, De La Rosa-
Velez J. Population structure of the purple sea urchin, Strongylocentrotus 
purpuratus, along the Baja California peninsula. Fisheries Sci. 2008;74:804–
812. doi:10.1111/j.1444-2906.2008.01592.x

43.	 Floeter SR, Rocha LA, Robertson DR, et al. Atlantic reef fish biogeography 
and evolution. J Biogeogr. 2008;35:22–47.

44.	 Edkins MT, Teske PR, Griffiths CL, Papadopoulos I. Genetic and 
morphological analyses suggest that southern African crown crabs, 
Hymenosoma orbiculare, represent five distinct species. Crustaceana. 
2007;80:667–683. doi:10.1163/156854007781360694

45.	 Hare MP, Guenther C, Fagan WF. Nonrandom larval dispersal can 
steepen marine clines. Evolution. 1995;59:2509–2517. doi:10.1554/05-
150.1, PMid:16526499

46.	 Steinke TD, Ward CJ. Use of plastic drift cards as indicators of possible 
dispersal potential of propagules of the mangrove Avicennia marina by ocean 
currents. Afr J Mar Sci. 2003;25:169–176. doi:10.2989/18142320309504007

47.	 Victor BC, Vasquez-Yeomans L, Valdez-Moreno M, et al. The larval, 
juvenile, and adult stages of the Caribbean reef goby, Coryphopterus kuna 
(Teleostei: Gobiidae): A reef fish with a pelagic larval duration longer than 
the post-settlement lifespan. Zootaxa. 2010;2346:53–61.

48.	 Butler GS. Aspects of the biology of Caffrogobius caffer (Günther) (Pisces: 
Teleostei: Gobiidae) in the eastern Cape. MSc thesis, Grahamstown, 
Rhodes University, 1980.

49.	 McQuaid CD, Phillips TE. Limited wind-driven dispersal of intertidal 
mussel larvae: In situ evidence from the plankton and the spread of the 
invasive species Mytilus galloprovincialis in South Africa. Mar Ecol Prog 
Ser. 2000;201:211–220. doi:10.3354/meps201211

50.	 Roberts MJ, Van den Berg M. Currents along the Tsitsikamma coast, South 
Africa, and potential transport of squid paralarvae and ichthyoplankton. 
Afr J Mar Sci. 2005;27:375–388. doi:10.2989/18142320509504096

51.	 Ayre DJ, Minchinton TE, Perrin C. Does life history predict past and 
current connectivity for rocky intertidal invertebrates across a marine 
biogeographic barrier? Mol Ecol. 2009;18:1887–1903. doi:10.1111/j.1365-
294X.2009.04127.x, PMid:19434808

52.	 Lutjeharms JRE. The Agulhas Current. Berlin: Springer; 2006.
53.	 Shillington FA. Oceanography of the southern African region. In: Smith 

MM, Heemstra PC, editors. Smith’s sea fishes. Cape Town: Struik, 1995; 
p. 22–28.

54.	 Wares JP, Pringle JM. Drift by drift: Effective population size limited 
by advection. BMC Evol Biol. 2008;8:235. doi:10.1186/1471-2148-8-235, 
PMid:18710549, PMCid:2536672

55.	 Von der Heyden S, Lipinski MR, Matthee CA. Remarkably low mtDNA 
control region diversity in an abundant demersal fish. Mol Phylogenet 
Evol. 2010;55:1183–1188. doi:10.1016/j.ympev.2009.09.018, PMid:19761857

56.	 Waters JM. Marine biogeographical disjunction in temperate Australia: 
Historical landbridge, contemporary currents, or both? Divers Distrib. 
2008;14:692–700. doi:10.1111/j.1472-4642.2008.00481.x

57.	 Teske PR, Hamilton H, Matthee CA, Barker NP. Signatures of seaway 
closures and founder dispersal in the phylogeny of a circumglobally 
distributed seahorse lineage. BMC Evol Biol. 2007;7:138. doi:10.1186/1471-
2148-7-138, PMid:17697373, PMCid:1978501

58.	 Clark PU, Dyke AS, Shakun JD, et al. The last glacial maximum. Science. 
2011;325:710–714. doi:10.1126/science.1172873, PMid:19661421

59.	 Fairbanks RG. A 17,000 year glacio-eustatic sea level record: Influence 
of glacial melting rate on the Younger Dryas event and deep-ocean 
circulation. Nature. 1989;342:637–642. doi:10.1038/342637a0

60.	 Dingle RV, Rogers J. Effects of sea-level changes on the Pleistocene 
palaeoecology of the Agulhas Bank. Palaeoecol Afr. 1972;6:55–58.

61.	 Romero O, Mollenhauer G, Schneider RR, Wefer G. Oscillations of the 
siliceous imprint in the central Benguela Upwelling System from MIS 3 
through to the early Holocene: The influence of the Southern Ocean. J 
Quaternary Sci. 2003;18:733–743. doi:10.1002/jqs.789

62.	 Hutson WH. The Agulhas Current during the Late Pleistocene: Analysis 
of modern faunal analogs. Science. 1980;207:64–66. doi:10.1126/
science.207.4426.64, PMid:17730815

63.	 Beckley LE. The ichthyoplankton assemblage of the Algoa Bay nearshore 
region in relation to coastal zone utilization by juvenile fish. S Afr J Zool. 
1985;21:244–252.

64.	 Slatkin M. Gene flow in natural populations. Ann Rev Ecol Syst. 
1985;16:393–430. doi:10.1146/annurev.es.16.110185.002141

65.	 Tankard AJ. Thermally anomalous late Pleistocene mollusks from the 
south-western Cape Province, South Africa. Ann S Afr Mus. 1975;69:17–
45.

66.	 Henshilwood C, d’Errico F, Vanhaeren M, Van Niekerk K, Jacobs Z. 
Middle Stone Age beads from South Africa. Science. 2004;304:404. 
doi:10.1126/science.1095905, PMid:15087540

67.	 Von der Heyden S, Lipinski MR, Matthee CA. Mitochondrial DNA 
analyses of the Cape hakes reveal an expanding, panmictic population 
for Merluccius capensis and population structuring for mature fish in 
Merluccius paradoxus. Mol Phylogenet Evol. 2007;42:517–527. doi:10.1016/j.
ympev.2006.08.004, PMid:16982203

68.	 Von der Heyden S, Lipinski MR, Matthee CA. Species specific genetic 
markers for identification of early life history stages of Cape hakes, 
Merluccius capensis and M. paradoxus in the southern Benguela Current. J 
Fish Biol. 2007;70:262–268. doi:10.1111/j.1095-8649.2007.01409.x

69.	 Florence WK, Hulley RA, Stewart BA, Gibbons MJ. Genetic and 
morphological variation of the lanternfish Lampanyctodes hectoris 
(Myctophiformes: Myctophidae) off southern Africa. S Afr J Mar Sci. 
2002;24:193–203. doi:10.2989/025776102784528466

70.	 Shaw PW, Hendrickson L, McKeown NJ, Stonier T, Naud MJ, Sauer 
WHH. Discrete spawning aggregations of loliginid squid do not represent 
genetically distinct populations. Mar Ecol Prog Ser. 2010;408:117–127. 
doi:10.3354/meps08593

71.	 Flint NS, Van der Bank FH, Theron PJ, Staby A. Genetic variation in two 
populations of the orange roughy (Hoplostethus atlanticus) from Namibia. 
S Afr J Aqua Sci. 1998/99;24:71–83.

72.	 Von der Heyden S, Groeneveld JC, Matthee CA. Long current to nowhere? 
– Genetic connectivity of Jasus tristani populations in the southern Atlantic 
Ocean. Afr J Mar Sci. 2007;29:491–497. doi:10.2989/AJMS.2007.29.3.15.345

73.	 Matthee CA, Cockcroft AC, Gopal K, Von der Heyden S. Mitochondrial 
DNA variation of the west-coast rock lobster, Jasus lalandii: Marked 
genetic diversity differences among sampling sites. Mar Freshwater Res. 
2007;58:1130–1135. doi:10.1071/MF07138

74.	 Tolley KA, Groeneveld J, Gopal K, Matthee CA. Mitochondrial DNA 
panmixia in spiny lobster Palinurus gilchristi suggests a population 
expansion. Mar Ecol Prog Ser. 2005;297:225–231. doi:10.3354/meps297225

75.	 Benzie JAH, Ballment E, Forbes AT, et al. Mitochondrial DNA variation 
in Indo-Pacific populations of the giant tiger prawn, Penaeus monodon. 
Mol Ecol. 2002;11:2553–2569. doi:10.1046/j.1365-294X.2002.01638.x, 
PMid:12453239

76.	 Stow A, Zenger K, Briscoe D, et al. Isolation and genetic diversity of 
endangered grey nurse shark (Carcharias taurus) populations. Biol 
Lett. 2006;2:308–311. doi:10.1098/rsbl.2006.0441, PMid:17148390, 
PMCid:1618890

77.	 Zemlak TS, Ward RD, Connell AD, Holmes BH, Hebert PDN. DNA 
barcoding reveals overlooked marine fishes. Mol Ecol Res. 2009;9:237–242. 
doi:10.1111/j.1755-0998.2009.02649.x

78.	 Waters JM, Roy MS. Out of Africa: The slow train to Australasia. Syst Biol. 
2004;53:18–24. doi:10.1080/10635150490264671, PMid:14965897

79.	 Matthee CA, Fourie F, Oosthuizen WH, Meyer MA, Tolley KA. 
Mitochondrial sequence data of the Cape fur seal (Arctocephalus pusillus 
pusillus) suggest that population numbers may be affected by climatic 
shifts. Mar Biol. 2005;148:900–905.

80.	 Ridgway T, Hoegh-Guldberg O, Ayre DJ. Panmixia in Pocillopora verrucosa 
from South Africa. Mar Biol. 2001;139:175–181. doi:10.1007/s002270100573

81.	 Teske PR, Hamilton H, Palsbøll PJ, et al. Molecular evidence for long-
distance colonization in an Indo-Pacific seahorse lineage. Mar Ecol Prog 
Ser. 2005;286:249–260. doi:10.3354/meps286249

82.	 Fratini S, Vannini M. Genetic differentiation in the mud crab Scylla serrata 
(Decapoda: Portunidae) within the Indian Ocean. J Exp Mar Biol Ecol. 
2002;272:103–116. doi:10.1016/S0022-0981(02)00052-7

83.	 Ragionieri L, Cannicci S, Schubart CD, Fratini S. Gene flow and 
demographic history of the mangrove crab Neosarmatium meinerti: A 
case study from the western Indian Ocean. Estuar Coastal Shelf Sci. 
2010;86:179–188. doi:10.1016/j.ecss.2009.11.002

84.	 Silva IC, Mesquita N, Paula J. Lack of population structure in the fiddler 
crab Uca annulipes along an East African latitudinal gradient: Genetic 
and morphometric evidence. Mar Biol. 2010;157:1113–1126. doi:10.1007/
s00227-010-1393-9

52

http://dx.doi.org/10.1007/s00227-003-1182-9
http://dx.doi.org/10.1093/mollus/eym012
http://dx.doi.org/10.3354/meps319191
http://dx.doi.org/10.3354/meps07245
http://dx.doi.org/10.1186/1471-2148-8-325
http://dx.doi.org/10.1007/s00227-010-1471-z
http://dx.doi.org/10.1111/j.1365-2699.2009.02138.x
http://dx.doi.org/10.3354/meps07607
http://dx.doi.org/10.1016/j.cub.2010.09.057
http://dx.doi.org/10.1016/j.cub.2010.09.057
http://dx.doi.org/10.1007/s00442-010-1788-9
http://dx.doi.org/10.1007/s00442-010-1788-9
http://dx.doi.org/10.1111/j.1444-2906.2008.01592.x
http://dx.doi.org/10.1163/156854007781360694
http://dx.doi.org/10.1554/05-150.1
http://dx.doi.org/10.1554/05-150.1
http://dx.doi.org/10.2989/18142320309504007
http://dx.doi.org/10.3354/meps201211
http://dx.doi.org/10.2989/18142320509504096
http://dx.doi.org/10.1111/j.1365-294X.2009.04127.x
http://dx.doi.org/10.1111/j.1365-294X.2009.04127.x
http://dx.doi.org/10.1186/1471-2148-8-235
http://dx.doi.org/10.1016/j.ympev.2009.09.018
http://dx.doi.org/10.1111/j.1472-4642.2008.00481.x
http://dx.doi.org/10.1186/1471-2148-7-138
http://dx.doi.org/10.1186/1471-2148-7-138
http://dx.doi.org/10.1126/science.1172873
http://dx.doi.org/10.1038/342637a0
http://dx.doi.org/10.1002/jqs.789
http://dx.doi.org/10.1126/science.207.4426.64
http://dx.doi.org/10.1126/science.207.4426.64
http://dx.doi.org/10.1146/annurev.es.16.110185.002141
http://dx.doi.org/10.1126/science.1095905
http://dx.doi.org/10.1016/j.ympev.2006.08.004
http://dx.doi.org/10.1016/j.ympev.2006.08.004
http://dx.doi.org/10.1111/j.1095-8649.2007.01409.x
http://dx.doi.org/10.2989/025776102784528466
http://dx.doi.org/10.3354/meps08593
http://dx.doi.org/10.2989/AJMS.2007.29.3.15.345
http://dx.doi.org/10.1071/MF07138
http://dx.doi.org/10.3354/meps297225
http://dx.doi.org/10.1046/j.1365-294X.2002.01638.x
http://dx.doi.org/10.1098/rsbl.2006.0441
http://dx.doi.org/10.1111/j.1755-0998.2009.02649.x
http://dx.doi.org/10.1080/10635150490264671
http://dx.doi.org/10.1007/s002270100573
http://dx.doi.org/10.3354/meps286249
http://dx.doi.org/10.1016/S0022-0981%2802%2900052-7
http://dx.doi.org/10.1016/j.ecss.2009.11.002
http://dx.doi.org/10.1007/s00227-010-1393-9
http://dx.doi.org/10.1007/s00227-010-1393-9


S Afr J Sci  2011;107(5/6)  http://www.sajs.co.za

Review ArticlePage 11 of 11

85.	 Ridgway T, Sampayo EM. Population genetic status of the Western Indian 
Ocean: What do we know? Western Indian Ocean J Mar Sci. 2005;4:1–9.

86.	 Grant WS, Leslie RW. Inter-ocean dispersal is an important mechanism 
in the zoogeography of hakes (Pisces: Merluccius spp.). J Biogeogr. 
2001;28:699–721. doi:10.1046/j.1365-2699.2001.00585.x

87.	 Grant WS, Bowen BW. Living in a tilted world: Climate change 
and geography limit speciation in Old World anchovies (Engraulis: 
Engraulidae). Biol J Linn Soc. 2006;88:673–689. doi:10.1111/j.1095-
8312.2006.00651.x

88.	 D’Amato ME, Harkins GW, De Oliveira T, Teske PR, Gibbons MJ. 
Molecular dating and biogeography of the neritic krill Nyctiphanes. Mar 
Biol. 2008;155:243–247. doi:10.1007/s00227-008-1005-0

89.	 Teske PR, Oosthuizen A, Papadopoulos I, Barker NP. Phylogeographic 
structure of South African Octopus vulgaris revisited: Identification of 
a second lineage near Durban harbour. Mar Biol. 2007;151:2119–2122. 
doi:10.1007/s00227-007-0644-x

90.	 Palero F, Lopes J, Abello P, Macpherson E, Pascual M, Beaumont MA. 
Rapid radiation in spiny lobsters (Palinurus spp.) as revealed by classic 
and ABC methods using mtDNA and microsatellite data. BMC Evol Biol. 
2009;9:263. doi:10.1186/1471-2148-9-263, PMid:19900277, PMCid:2777881

91.	 Rius M, Teske PR. A revision of the Pyura stolonifera species complex 
(Tunicata, Ascidiacea), with a description of a new species from Australia. 
Zootaxa. 2011;2754:27–40.

92.	 Felsenstein J. Accuracy of coalescent likelihood estimates: Do we need 
more sites, more sequences, or more loci? Mol Biol Evol. 2006;23:691–700. 
doi:10.1093/molbev/msj079, PMid:16364968

93.	 Irwin DE. Phylogeographic breaks without geographic barriers to 
gene flow. Evolution. 2002;56:2383–2394. doi:10.1111/j.0014-3820.2002.
tb00164.x, PMid:12583579

94.	 Stephens M, Smith N, Donnelly P. A new statistical method for haplotype 
reconstruction from population data. Am J Hum Genet. 2001;68:978–989. 
doi:10.1086/319501, PMid:11254454

95.	 Flot J-F. CHAMPURU 1.0: A computer software for unraveling mixtures 
of two DNA sequences of unequal lengths. Mol Ecol Notes. 2007;7:974–
977. doi:10.1111/j.1471-8286.2007.01857.x

96.	 Jarman SN, Ward RD, Elliott NG. Oligonucleotide primers for PCR 
amplification of coelomate introns. Mar Biotech. 2002;4:347–355. 
doi:10.1007/s10126-002-0029-6, PMid:14961246

97.	 Teske PR, Beheregaray LB. Intron-spanning primers for the amplification 
of the nuclear ANT gene in decapod crustaceans. Mol Ecol Res. 2009;9:774–
776. doi:10.1111/j.1755-0998.2009.02534.x

98.	 Chow S, Hazama K. Universal PCR primers for S7 ribosomal gene introns 
in fish. Mol Ecol. 1998;7:1255–1256. PMid:9734083

99.	 Rosenblum EB, Belfiore NM, Moritz C. Anonymous nuclear markers for 
the eastern fence lizard, Sceloporus undulatus. Mol Ecol Notes. 2007;7:113–
116. doi:10.1111/j.1471-8286.2006.01547.x

100.	Teske PR, Forget FRG, Cowley PD, Beheregaray LB. Microsatellite 
markers for the roman, Chrysoblephus laticeps (Teleostei: Sparidae), an 
overexploited seabream from South Africa. Mol Ecol Res. 2009;9:1162–
1164. doi:10.1111/j.1755-0998.2009.02595.x

101.	Galbusera PHA, Gillemot S, Jouk P, Teske PR, Hellemans B, Volckaert 
FAMJ. Microsatellite markers developed for the endangered Knysna 
seahorse, Hippocampus capensis, and their use in the detection of a 
genetic bottleneck. Mol Ecol Notes. 2007;7:638–640. doi:10.1111/j.1471-
8286.2007.01688.x

102.	Dos Santos SMR, Klopper AW, Oosthuizen CJ, Bloomer P. Isolation 
and characterization of polymorphic tetranucleotide microsatellite 
loci in the pelagic perciform fish Pomatomus saltatrix (Linnaeus, 1766) 
from South Africa. Mol Ecol Res. 2008;8:1065–1067. doi:10.1111/j.1755-
0998.2008.02156.x

103.	Chopelet J, Helyar S, Mann B, Mariani S. Novel polymorphic microsatellite 
loci for the protogynous hermaphrodite slinger sea bream (Chrysoblephus 
puniceus, Sparidae). Mol Ecol Res. 2009;9:1223–1226. doi:10.1111/j.1755-
0998.2009.02615.x

104.	Bester-van der Merwe AE, Roodt-Wilding R, Volckaert FAM, D’Amato 
ME. Historical isolation and hydrodynamically constrained gene flow 
in declining populations of the South-African abalone, Haliotis midae. 
Conserv Genet. 2011;12(2):543–555. doi:10.1007/s10592-010-0162-0

105.	Bensch S, Akesson M. Ten years of AFLP in ecology and evolution: 
Why so few animals? Mol Ecol. 2005;14:2899–2914. doi:10.1111/j.1365-
294X.2005.02655.x, PMid:16101761

106.	Badenhorst D, Roodt-Wilding R. Application of various DNA extraction 
methodologies on abalone, Haliotis midae, larvae and juveniles 
for fluorescent AFLP analysis. Aquaculture Res. 2007;38:546–549. 
doi:10.1111/j.1365-2109.2007.01698.x

107.	Griffiths CL, Robinson TB, Lange L, Mean A. Marine biodiversity in 
South Africa: An evaluation of current states of knowledge. PLoS ONE. 
2010;5:e12008. doi:10.1371/journal.pone.0012008, PMid:20689849, 
PMCid:2914023

108.	Rouault M, Penven P, Pohl B. Warming in the Agulhas Current system since 
the 1980s. Geophys Res Lett. 2009;36:L12602. doi:10.1029/2009GL037987

109.	Lin H-C, Sanchez-Ortiz C, Hastings PA. Colour variation is incongruent 
with mitochondrial lineages: Cryptic speciation and subsequent 
diversification in a Gulf of California reef fish (Teleostei: Blennioidei). 
Mol Ecol. 2009;18:2476–2488. doi:10.1111/j.1365-294X.2009.04188.x, 
PMid:19389167

110.	Von der Heyden S. ‘Carry on sampling’ – assessing marine fish biodiversity 
and discovery rates in southern Africa. Divers Distrib. 2011;17:81–92. 
doi:10.1111/j.1472-4642.2010.00712.x

111.	Beerli P. How to use MIGRATE or why are Markov chain Monte Carlo 
programs difficult to use? In: Bertorelle G, Bruford MW, Hauïe HC, 
Rizzoli A, Vernesi C, editors. Population genetics for animal conservation, 
volume 17 of conservation biology. Cambridge: Cambridge University 
Press, 2009; p. 42–79.

112.	Hey J, Nielsen R. Integration within the Felsenstein equation for improved 
Markov chain Monte Carlo methods in population genetics. Proc Natl 
Acad Sci USA. 2007;104:2785–2790. doi:10.1073/pnas.0611164104, 
PMid:17301231, PMCid:1815259

113.	Hickerson MJ, Stahl E, Takebayashi N. msBayes: Pipeline for testing 
comparative phylogeographic histories using hierarchical approximate 
Bayesian computation. BMC Bioinf. 2007;8:268. doi:10.1186/1471-2105-8-
268, PMid:17655753, PMCid:1949838

114.	Beerli P, Palczewski M. Unified framework to evaluate panmixia and 
migration direction among multiple sampling locations. Genetics. 
2010;185:313–326. doi:10.1534/genetics.109.112532, PMid:20176979, 
PMCid:2870966

115.	Blastoch A, Boning CW, Schwarzkopf FU, Lutjeharms JRE. Increase in 
Agulhas leakage due to poleward shift of southern hemisphere westerlies. 
Nature. 2009;462:495–498. doi:10.1038/nature08519, PMid:19940923

116.	Lutjeharms JRE, Durgadoo JV, Schapira M, McQuaid CD. First 
oceanographic survey of the entire continental shelf adjacent to the 
northern Agulhas Current. S Afr J Sci. 2010;106(9/10):7–9.

53

http://dx.doi.org/10.1046/j.1365-2699.2001.00585.x
http://dx.doi.org/10.1111/j.1095-8312.2006.00651.x
http://dx.doi.org/10.1111/j.1095-8312.2006.00651.x
http://dx.doi.org/10.1007/s00227-008-1005-0
http://dx.doi.org/10.1007/s00227-007-0644-x
http://dx.doi.org/10.1186/1471-2148-9-263
http://dx.doi.org/10.1093/molbev/msj079
http://dx.doi.org/10.1111/j.0014-3820.2002.tb00164.x
http://dx.doi.org/10.1111/j.0014-3820.2002.tb00164.x
http://dx.doi.org/10.1086/319501
http://dx.doi.org/10.1111/j.1471-8286.2007.01857.x
http://dx.doi.org/10.1007/s10126-002-0029-6
http://dx.doi.org/10.1111/j.1755-0998.2009.02534.x
http://dx.doi.org/10.1111/j.1471-8286.2006.01547.x
http://dx.doi.org/10.1111/j.1755-0998.2009.02595.x
http://dx.doi.org/10.1111/j.1471-8286.2007.01688.x
http://dx.doi.org/10.1111/j.1471-8286.2007.01688.x
http://dx.doi.org/10.1111/j.1755-0998.2008.02156.x
http://dx.doi.org/10.1111/j.1755-0998.2008.02156.x
http://dx.doi.org/10.1111/j.1755-0998.2009.02615.x
http://dx.doi.org/10.1111/j.1755-0998.2009.02615.x
http://dx.doi.org/10.1007/s10592-010-0162-0
http://dx.doi.org/10.1111/j.1365-294X.2005.02655.x
http://dx.doi.org/10.1111/j.1365-294X.2005.02655.x
http://dx.doi.org/10.1111/j.1365-2109.2007.01698.x
http://dx.doi.org/10.1371/journal.pone.0012008
http://dx.doi.org/10.1029/2009GL037987
http://dx.doi.org/10.1111/j.1365-294X.2009.04188.x
http://dx.doi.org/10.1111/j.1472-4642.2010.00712.x
http://dx.doi.org/10.1073/pnas.0611164104
http://dx.doi.org/10.1186/1471-2105-8-268
http://dx.doi.org/10.1186/1471-2105-8-268
http://dx.doi.org/10.1534/genetics.109.112532
http://dx.doi.org/10.1038/nature08519

