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1. Introduction

The genus Atherina (Sand-smelts) is distributed in the
Eastern Atlantic Ocean and Mediterranean Sea, extending
south along the African coast into the Indian Ocean (Quig-
nard and Pras, 1986). It is a genus of small inshore fishes
with many populations living in brackish and freshwater.

The taxonomy of the genus has been troublesome due to
the intraspecific variability of some of its species, the over-
lap of characters among many of them and because many
nominal species were apparently described based on indi-
viduals originating from different localities. After the revi-
sion of Kiener and Spillman (1969) only three species were
accepted for the Mediterranean and divided in two subgen-
era: Atherina including Atherina hepsetus (Linnaeus 1758)
and Hepsetia including Atherina boyeri (Risso 1810) and
Atherina presbyter (Cuvier 1829). A. hepsetus is restricted
to the Mediterranean, A. presbyter occurs mainly in the
North-eastern Atlantic and very sporadically in the Medi-
terranean, and A. boyeri occurs in both areas. In addition
to these species, two others have been recognized: A. lopezi-
1055-7903/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.ympev.2007.12.009

* Corresponding author. Address: UIE, Instituto Superior de Psicologia
Aplicada, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal. Fax:
+351 218860954.

E-mail address: sara_francisco@ispa.pt (S.M. Francisco).
ana confined to the Gulf of Guinea, and A. breviceps in the
South-eastern Atlantic and ranging into the Indian Ocean
along the East coast of Africa (Maugé, 1990). Some
authors did not accept this revised classification and in
the past 20 years several studies based on morphological
traits and mitochondrial DNA have suggested some mod-
ifications or proposed new species among A. boyeri. A sum-
mary of the more relevant changes in the taxonomic history
of Mediterranean Atherina is presented in Table 1, together
with the proposals emerging from the present work.

In the present study 515 specimens ranging from the
Wadden Sea to the Canary Islands and the Azores Islands,
and eastwards to the Black Sea and a freshwater basin in
Turkey were analyzed in order to investigate the phyloge-
netic relationships within the genus Atherina occurring in
the North-eastern Atlantic and Mediterranean. Two mito-
chondrial DNA markers were analyzed: a fragment of the
slowly evolving 12S rDNA gene and a fragment of the rap-
idly evolving control region (CR).
2. Materials and methods

A total of 515 fish of the genus Atherina were obtained
from several locations in the European Atlantic coast and
rivers, North Sea, Canary Islands, Azores Islands,
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Table 1
Simplified taxonomical history of Atherina boyeri

Lagoon form Marine punctuated form Marine non-punctuated form

Early studies Several species described (up to 20 in the Mediterranean Sea)
e.g. Gourret (1894) A. mochon Not clearly described A. boyeri

Kiener and Spillman (1969) revision A. boyeri

Kottelat (1997) A. boyeri A. mochon

Trabelsi et al. (2002b,a)a A. lagunae A. punctata A. boyeri

Klossa-Kilia et al. (2007, 2002) Lagoon A. boyeri Not mentioned Marine A. boyeri

Astolfi et al. (2005) A. boyeri Punctuated form Non-punctuated form

Present work A. boyerib Punctuated form Non-punctuated form

a Species not formally described.
b Present in coastal lagoons, brackish sections of estuaries and freshwater bodies.
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Morocco, Mediterranean, Black Sea and Lake Sapanca in
Turkey (Fig. 1 and Table 2).

Total genomic DNA extraction was performed on fin
samples preserved in 96% ethanol (Sambrook et al.,
1989). To amplify the two mitochondrial regions the fol-
lowing primer pairs were used: L-pro1 and H-DL1 (Ostel-
lari et al., 1996) for the CR, and 12SFor and 12SRev
(Henriques et al., 2002) for the12S rDNA. PCR and
sequencing were performed as service by Macrogen (Seoul,
Korea) and details may be requested from the authors. All
sequences were aligned using Clustal X (Thompson et al.,
1997).

Statistical and phylogenetic analyses were performed
using PAUP* 4.0b (Swofford, 2000) and MRBAYES 3.1
(Huelsenbeck and Ronquist, 2001; Ronquist and Huelsen-
beck, 2003). The sequences of Hypoatherina tsurugae and
Fig. 1. Map of sampling locations. The
Melanotaenia lacustris (Accession Nos. AP004420 and
NC_004385) were used as outgroups.

As the Partition-homogeneity test (Farris et al., 1995)
did not yield significant differences between the two frag-
ments (P = 0.520), a set of concatenated sequences was
used.

MODELTEST 3.7 (Posada and Crandall, 1998) was
used to select the best model of evolution to be used in
Neighbour-joining analysis (NJ). The selected model was
TrN + I + G (Tamura and Nei, 1993). A Maximum Parsi-
mony (MP) analysis was performed with heuristic search
and transition/transversion rate (ti/tv) of 1, 5 and 10 were
used. Robustness of the inferred MP and NJ trees was
tested by using bootstrap replicates (Felsenstein, 1985).

Bayesian analysis was performed using MCMC as
implemented in MRBAYES with four independent runs
location numbers are as in Table 2.



Table 2
Collection sites and number of Atherina individuals used in the present work

Collection
site

Number in
Fig. 1

N A. presbyter A. hepsetus A. boyeri Punctuated fish Non-punctuated fish

12S d-loop 12S d-loop 12S d-loop 12S d-loop 12S d-loop

Atlantic

Germany Wadden Sea 1 19 6 19

UK Swansea 2 3 2 3a

France Arcachon 3 2 2 2a

Portugal Gelfa 4 3 3
Cabo Mundo 5 8 8
Douro 6 3 3
Aveiro 7 24 3 24b

Mondego 8 28 6 28b

Almonda (Tagus) 9 21 5 21b

Boquilobo (Tagus) 10 1 1b

S. Pedro Estoril 11 3 3
Tagus 12 11 1 10a

Fonte-da-Telha 13 24 2 24b

Lagoa Albufeira 14 28 6 22
Arrábida 15 2 2 2b

Sado 16 10 2 4 4
Amoreira 17 11 3
Lagos 18 3 3
Arade 19 26 26
Ilha-de-Faro 20 6 6
Olhão 21 1 1
Castro Marim 22 20 3 19 1
(Santa Maria) 23 6 6 6

Spain (Tenerife) 24 24 8 24
Zonar 25 10 2 10a

Morocco Sebou 26 12 12 12
Loukkos 27 4 3 4

Mediterranean

Spain Ebro (Barcelona) 28 5 5 5
Formentera 29 10 10 10

France Biguglia 30 2 2
Lavezzi 31 3 2 3
Scandola 32 3 2 3
Agde 33 2 2 2
Thau 34 2 2 2
Mauguio 35 2 2 2
Or 36 10 2 10a

Tunisia Tunis 37 6 6a

Cap Zebib 38 2 2 2
Hergla 39 2 2 2

Italy Fucecchio 40 10 3 10a

Cagliari 41 13 1 3 3 10a

Marsala 42 10 4 10a

Faro 43 10 3 10a

Lampedusa 44 2 1 2
Acquatina 45 10 3 10a

Scardovari 46 10 3 10a

Chioggia 47 22 22

Croatia Spalato 48 13 2 3 4 10a

Israel ? 49 3 3 3

Greece Trichonidas 50 3 3c 3c

Korinthiakos 51 8 4 4 4c 4c
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Table 2 (continued)

Collection
site

Number in
Fig. 1

N A. presbyter A. hepsetus A. boyeri Punctuated fish Non-punctuated fish

12S d-loop 12S d-loop 12S d-loop 12S d-loop 12S d-loop

Kaiafas 52 3 3c 3c

Kiparisia 53 3 3c 3c

Tinos 54 3 3 3

Black sea

Turkey Lake Sapanca 55 5 4 5

Romania Danube 56 10 6 10a

Bulgaria ? 57 15 3 15

a Astolfi et al. (2005).
b Francisco et al. (2006).
c Klossa-Kilia et al. (2007).
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of four chains of 7,000,000 generations each, and consider-
ing two independent data partitions corresponding to each
mitochondrial region. Topologies were sampled every 1000
generations, and a majority-rule consensus tree was esti-
mated after discarding the first 4000 sampled generations.

The Kishino–Hasegawa test (Kishino and Hasegawa,
1989) was performed to examine the congruence between
the MP and Bayesian trees.

After the different clades were identified, inter-clade dis-
tances were computed using the software package ARLE-
QUIN 3.1 (Excoffier et al., 2005).
3. Results

About 350 and 370 bp of the 12S and control region,
respectively, were amplified. Among the 178 12S samples
a total of 35 distinct haplotypes were found, while 495 sam-
ples of CR yielded 265 haplotypes (Table 3 in electronic
supplements).

The NJ and MP trees presented the same topology. The
Bayesian tree is shown in Fig. 2, along with bootstrap val-
ues for NJ and MP. The Kishino–Hasegawa test yielded no
significant differences between the MP and Bayesian trees
(P = 1.000). All inference methods are consistent with the
monophyly of Atherina. Within the genus, the three infer-
ence methods recovered four major clades (A. presbyter/
A. hepsetus, A. boyeri, punctuated and non-punctuated
fish) supported with high bootstraps and posterior proba-
bilities. Finally, all methods provide indications that two
sister groups are present: one including the lineage A. pres-

byter/A. hepsetus, and other grouping the remaining major
clades. However, the statistical support of this last group is
not strong. Within this clade, relationships among punctu-
ated, non-punctuated and A. boyeri could not be resolved
by the present analysis. Within the A. presbyte/A. hepsetus

main cluster, three subgroups are present: A. hepsetus, the
fish from European Atlantic shores and the fish from the
Macaronesian Islands. The monophyly of A. presbyter

although presented in Fig. 2 lacks the support of the Bayes-
ian analysis but it is supported by the other two methods.

While in A. presbyter, A. hepsetus, punctuated and non-
punctuated no geographical patterns were detected (except
for the Canary and Azores Islands, as mentioned above),
A. boyeri is subdivided in several distinct phylogroups cor-
responding to different geographical areas and confirming
Astolfi et al. (2005) findings. A first subgroup includes fish
from Tunisia and the Sicily channel which are deeply sep-
arated from all the others. A second subgroup includes
all fish from the Western Mediterranean and adjacent
Atlantic rivers and all but one samples from the Adriatic
Sea. A third subgroup is composed by the Greek samples
on one hand and by those from the Danube delta, the
Black Sea and the freshwater samples of Lake Sapanca
on the other. The relationships among these three sub-
groups are not yet fully resolved as shown by the polytomy
yielded by NJ and MP methods.

Among group corrected P-distances expressed as per-
centage divergence average 3.87 for the 12S and 16.31 for
CR (Tables 4 and 5 in electronic supplements).
4. Discussion

4.1. Taxonomical implications

The present results are consistent with the monophyly of
the genus Atherina from the North-eastern Atlantic and
Mediterranean, and its subdivision in five clearly separated
groups. These groups perfectly correspond to two already
recognized species (A. hepsetus and A. presbyter) and to
three additional lineages that emerge within A. boyeri sensu

Kiener and Spillman (1969). Although these clades had
been identified in previous studies (Table 1) based on
restricted sampling areas, their presence across wide areas
of the Mediterranean and their high genetic inter-clade dis-
tances (Tables 4 and 5 in electronic supplements) suggests
that they likely correspond to valid species awaiting formal
description.

The sister relationship between A. presbyter and A. heps-

etus, previously suggested by Astolfi et al. (2005) is con-
firmed. Thus, another taxonomical implication of the
present work is the non-validity of the subgenera Atherina

and Hepsetia sensu Kiener and Spillman (1969). Our data
revealed the existence of a cohesive group of A. presbyter

from Portugal to Germany. The samples from the Canaries
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and Azores, however, show a clear differentiation and
deserve further attention. As there are no genetic data on
the West African A. lopeziana, doubts could arise on the
identity of this Canarian fish. Additional taxonomic work
is also needed in the Macaronesian islands and the African
coast before we can achieve a complete phylogeny and
proper taxonomy of the genus Atherina.

The emergence of A. boyeri as a complex clade with
clear geographic subdivisions is also confirmed by our
data. This fact is probably related to the distinct life cycle
of this species which is, among the five here described,
the one most associated with more fragmented environ-
ments (lagoons, estuaries and freshwater bodies). The frag-
mentation of these habitats together with the low dispersal
ability of the species is probably responsible for the highly
structured phylogeographic pattern observed. A distinct
group, probably south Mediterranean, was recovered from
Tunisia and the Sicily Channel. In the north, a large group
is centered in the West Mediterranean, ranging into the
adjacent Atlantic rivers and into the Adriatic Sea. Finally
an eastern group includes a subdivision in the Aegean
Sea and a distinct subgroup in the Black Sea, the Danube
Delta and the freshwaters of Anatolia, the latter corre-
sponding to what some authors called A. mochon pontica

(e.g. Dobrovolov and Ivanova, 1999).
Finally, the punctuated and non-punctuated groups

were confirmed and it was shown that their separation
from other Atherina clades was a deep event, of a magni-
tude comparable to that separating A. presbyter from
A. boyeri.

In summary, we can state that A. boyeri sensu Kiener
and Spillman (1969) is polyphyletic encompassing three
distantly related clades (Table 1). One includes what we
labeled as non-punctuated, is typically marine, and is
spread all over the Mediterranean Sea. A second clade
includes what we labeled punctuated fish and is spread
throughout the western Mediterranean in marine condi-
tions. The third clade, we labeled A. boyeri is a brackish/
freshwater clade spread from Western Europe and Mor-
occo to Turkey in estuaries, rivers, lagoons and lakes,
and has a clear geographical subdivision. The differences
either in color pattern or ecology combined with the large
genetic distances strongly suggest that these clades are
three valid species.

4.2. Biogeographical implications

From a biogeographic perspective a remarkable feature
emerging from the present study is the relatively high pro-
portion of Mediterranean endemic Atherina species. Out of
the five major clades identified, three are endemic to the
Mediterranean Sea and the brackish/freshwater A. boyeri

ranges extensively around this sea with a small extension
to the North-eastern Atlantic rivers and lagoons.

There is no calibrated molecular clock for the CR of
Atherina. If we adopt the 10% divergence rate suggested
by Bowen et al. (2006) we find that the corrected distance
between A. hepsetus and A. presbyter corresponds to a
divergence time of less than a million years. Such a pattern
is consistent with a split of an ancestral population caused
by the Pleistocene glaciations with survival in at least two
refugia: one in the Mediterranean and one or more in West
Africa/Macaronesia. Indeed, during glacial maxima, polar
to cold temperate conditions occurred as far south as the
Iberian Peninsula and even affected the shores of North-
west Africa. In West Africa, Madeira and part of the
Canaries, as well as in pockets within the Mediterranean,
warmer waters persisted, which caused vicariant speciation
of many species pairs, with one member in West African
Macaronesia and the other in the Mediterranean (e.g.
Domingues et al., 2006). It is likely that A. hepsetus is a
Mediterranean derivative of a mainly Atlantic stock, an
interpretation favoured by the much higher genetic diver-
sity of A. presbyter when compared with A. hepsetus.

The western European and Moroccan A. boyeri belongs
to the same clade that occurs in the Western Mediterranean
and Adriatic Seas and probably survived in the Mediterra-
nean area re-invading Atlantic rivers and lagoons after the
last glaciation (Francisco et al., 2006).

The remaining phylogroups included in A. boyeri, as
well as the marine punctuated and non-punctuated fish,
are Mediterranean. It is likely that regional ‘‘pockets” of
atherinids may have become isolated when the Mediterra-
nean underwent serious fragmentation of its circulation.
Two scenarios are compatible with the hypothesis outlined
above. The glacial peaks caused drastic sea level drops and
reduced warm water to a number of scattered ‘‘pockets”.
Alternatively, the Messinian Salinity Crisis fragmented
the Mediterranean into a number of water bodies of very
variable salinities (Bianco, 1990). Perhaps A. boyeri, with
its marked preference for brackish and freshwater, is a
Paratethys immigrant into the Mediterranean. Its range,
from the Caspian and Black Seas to the Atlantic, is sugges-
tive of such a possibility. Only the calibration of a molecu-
lar clock for Atherina will help to access both the Messinian
and Pleistocene scenarios.
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écologique des athérines des côtes franc�aises. Mem. Mus. Natl. Hist.
Nat. – Ser A 60, 1–74.
Kishino, A., Hasegawa, M., 1989. Evaluation of the maximum likelihood
estimate of the evolutionary tree topologies from DNA sequence data,
and the branching order in hominoidea. J. Mol. Evol. 29, 170–179.

Klossa-Kilia, E., Papasotiropoulos, V., Tryfonopoulos, G., Alathiotis, S.,
Kilias, G., 2007. Phylogenetic relationships of Atherina hepsetus and
Atherina boyeri populations from Greece, based on mtDNA sequences.
Biol. J. Linn. Soc. 92, 151–161.

Klossa-Kilia, E., Prassa, M., Papasotiropoulos, V., Alahiotis, S., Kilias,
G., 2002. Mitochondrial DNA diversity in Atherina boyeri populations
as determined by RFLP analysis of three mtDNA segments. Heredity
89, 363–370.

Kottelat, M., 1997. European freshwater fishes. Biologia 52 (Suppl 5), 1–
271.
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