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Global Temperatures

How do we measure 
paleotemperatures?
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Isotopically light water evaporates 
from the ocean and returns via 
rivers: the system is in balance.

Glaciers expand, forming a new 
reservoir of isotopically light water on 
the land: sea level drops and the ocean 
becomes isotopically heavy.
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Microfossil shells

Shells are made of  
calcite (CaCO3)
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Holocene
EPICA Dome C, Antarctica (x 0.5)

NGRIP, Greenland (x 0.5)

Marcott et al (2013)

Berkeley Earth land-ocean

IPCC AR5 RCP8.5
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Relative abundance of O18/O16 
varies with evaporation, 
precipitation and water storage in 
the poles.

Measuring temperature

O16 evaporates

enriched H2O18

O18/O16 aumenta
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Sea Level Variation

volume of water in the oceans
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Sea Level Variation

 loading of the crust of the earth
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During an ice age 
isostatic change: build up of ice on the land.  
(As water is stored on the land in glaciers, the weight of the land increases and the land sinks 
slightly, causing the sea level to rise slightly. This is referred to as compression.) 

During inter-glaciers 
isostatic change: the ice melts, the land begins to 
rise up again and the sea level falls.  
(This is referred to decompression or isostatic rebound. Isostatic rebound takes place 
incredibly slowly and to this day, isostatic rebounding is still taking place from the last ice 
age.)
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“Both eustatic and isostatic changes during the 
Pleistocene (and Holocene) strongly influenced 

the distributions and diversity of biotas.”  

Lomolino et al. 2006. p. 284.

Isostatic change is a local sea level change. 
Eustatic change is a global sea level change. Sea Level Lowering at 

the LGM
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Global Sea Level Variation
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Mark McCaffrey , NGDC/NOAA Source: http://www.ncdc.noaa.gov/paleo/slides/slideset/11/11_178_slide.html 
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LGM extended coastlines (sea-level drop 120m) computed from global bathymetry 
(Smith and Sandwell, 1997)

Ray, N. and J. M. Adams. 2001. Internet Archaeology 11 (http://intarch.ac.uk/journal/issue11/rayadams_toc.html)

Global Sea Level Variation
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Global Sea Level Variation
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Global Sea Level Variation
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Eustatic sea level change:  fluctuations driven by changes in ice volume
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Global Sea Level Variation

Range shifts of marine 
organisms

Range shifts

Cooling trend

Warming trend

Shift in geographic distribution


adapted from Grant and Waples (2000)

No range contraction
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Shift in geographic distribution




Range shifts

Range contraction and possible extinction: warming or cooling

adapted from Grant and Waples (2000)

Shift in geographic distribution


Range shifts

Warm or cooling trend

Range contraction and mixing

Shift in geographic distribution


The models

Warm or cooling trend

Range expansion

Shift in geographic distribution


Range shifts

Population subdivision: warming or cooling
adapted from Grant and Waples (2000)

Shift in geographic distribution




The models

Dispersal across relaxed temperature barriers 

Tropical coolingPolar warming

Shift in geographic distribution


Range shifts
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of prime habitats
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Changes in the nature and location of climatic 
and environmental zones
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Formation and dissolution of dispersal routes
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Other species persist and adapted
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Other species ranges were reduced, and some 
became extinct

Biogeographic Responses to 
 Glaciation-Deglaciation

Changes in the location, extent, and configuration 
of prime habitats

Changes in the nature and location of climatic 
and environmental zones

Formation and dissolution of dispersal routes
Some species move with optimal habitat
Other species persist and adapted

How do range shifts of 
affect the genetics 
marine organisms?
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What happens to the genetic 
architecture of leading-edge 

populations?
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Successive colonisation bottlenecks

South

North
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Colonisation leads to erosion of diversity
Successive colonisation bottlenecks

reduction of diversity
(64.2% of studies)

reproductive isolation
(70.2% of studies)

A common hypothesis: 
Bottlenecks
Decrease in neutral genetic diversity
Reduced adaptive potential

South

North

[Eckert et al. 2008, Mol Ecol]
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Colonisation leads to erosion of diversity
Successive colonisation bottlenecks

South

North
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Excoffier and Ray 2008. TREE 23:347–351.

Examples

Gobius niger: so far away and yet so close
a tale of the North and South

Sampling locations and sampling size
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Diversity estimates

North South
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Diversity estimates

diversity below the mean

diversity above the mean

Haplotype diversity plot for Gobius niger d-loop sequences

Haplotype network
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Chondrus crispus
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Present distribution

Provan & Maggs 2011. PRSL

Examples

Provan & Maggs 2011. PRSL

Mitochondrial SNP (trnI intron)

Examples

Mitochondrial SNP (trnI intron)

Sequencing of two single-copy nuclear loci

Provan & Maggs 2011. PRSL

Examples

Putative refugial areas
 Dry land at the LGM

Provan & Maggs 2011. PRSL
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Iberia
Channel

Western

USA

Provan & Maggs 2011. PRSL
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Bigg et al. 2007. PRSL 
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Applying IPCC-class models of global warming to 
fisheries prediction  -  Princeton June 2009

Where did cod survive during the last ice age?
Estimated time since population sub-division 

200-80 
MY

Bigg et al. 2008. PRSL

50-85? 75-150
MY

30–20K

50-10K

Applying IPCC-class models of global warming to 
fisheries prediction  -  Princeton June 2009

>99.99% mortality in first 
few weeks of life

Many millions of eggs 
produced per female

Dynamics of early life is critical and sensitive

Image: Glynn Gorick for 
‘Cod and Climate’ (ICES)

Applying IPCC-class models of global warming to 
fisheries prediction  -  Princeton June 2009
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Key parameters for spawning

Applying IPCC-class models of global warming to 
fisheries prediction  -  Princeton June 2009

Water depth 
<500m 

Time of spawning 
Feb -June

IC
ES

 e
m

pi
ric

al
 d

at
a 

fo
r 2

3 
co

d 
st

oc
ks

 (B
ra

nd
er

 1
99

4,
 2

00
5)

 

Key parameters for spawning



Applying IPCC-class models of global warming to 
fisheries prediction  -  Princeton June 2009

Water depth 
<500m 

Time of spawning 
Feb -June

Temperature
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Key parameters for spawning
Climate change consequences


