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5 The Theory of Natural
Selection

This chapter introduces formal population genetic models.
We first establish what the variables are that the models

are concerned with, and the general structure of population
genetic models. We look at the Hardy–Weinberg equilibrium,
and see how to calculate whether a real population fits it. We
then move on to models of natural selection, concentrating
on the specific case of selection against a recessive
homozygote. We apply the model to two examples: the
peppered moth and resistance to pesticides. The second 
half of the chapter is mainly about how natural selection 
can maintain genetic polymorphism. We look at
selection–mutation balance, heterozygous advantage, 
and frequency-dependent selection; and we finish by 
looking at models that include migration in a geographically
subdivided population. The theory in this chapter all
assumes that the population size is large enough for random
effects to be ignored. Chapters 6 and 7 consider how random
effects can interact with selection in small populations.
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5.1 Population genetics is concerned with genotype 
and gene frequencies

The human genome, on current estimates, contains something like 30,000 gene loci.
Let us focus on just one of them a on a locus at which there is more than one allele,
because no evolutionary change can happen at a locus for which every individual in the
population has two copies of the same allele. We shall be concerned in this chapter with
models of evolution at a single genetic locus; these are the simplest models in popula-
tion genetics. Chapters 8 and 9 discuss more complex models in which evolutionary
change occurs simultaneously at more than one locus.

The theory of population genetics at one locus is mainly concerned to understand
two closely connected variables: gene frequency and genotype frequency. They are easy to
measure. The simplest case is one genetic locus with two alleles (A and a) and three
genotypes (AA, Aa, and aa). Each individual has a genotype made up of two genes at the
locus and a population can be symbolized like this:

Aa AA aa aa AA Aa AA Aa

This is an imaginary population with only eight individuals. To find the genotype 
frequencies we simply count the numbers of individual with each genotype. Thus:

Frequency of AA = 3/8 = 0.375
Frequency of Aa = 3/8 = 0.375
Frequency of aa = 2/8 = 0.25

In general we can symbolize genotype frequencies algebraically, as follows.

Genotype AA Aa aa
Frequency P Q R

P, Q, and R are expressed as percentages or proportions, so in our population,
P = 0.375, Q = 0.375, and R = 0.25 (they have to add up to 1, or to 100%). They are 
measured simply by observing and counting the numbers of each type of organism in
the population, and dividing by the total number of organisms in the population (the
population size).

The gene frequency is likewise measured by counting the frequencies of each gene in
the population. Each genotype contains two genes, and there are a total of 16 genes per
locus in a population of eight individuals. In the population above,

Frequency of A = 9/16 = 0.5625
Frequency of a = 7/16 = 0.4375

Algebraically, we can define p as the frequency of A, and q as the frequency of a. p and q
are usually called “gene” frequencies, but in a strict sense they are allele frequencies: they
are the frequencies of the different alleles at one genetic locus. The gene frequencies can
be calculated from the genotype frequencies:
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We define genotype frequency . . .

. . . and gene frequency
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p = P + 1/2Q (5.1)
q = R + 1/2Q

(and p + q = 1). The calculation of the gene frequencies from genotype frequencies is
highly important. We shall make recurrent use of these two simple equations in the
chapter. Although the gene frequencies can be calculated from the genotype frequen-
cies (P, Q, R), the opposite is not true: the genotype frequencies cannot be calculated
from the gene frequencies (p, q).

Now that we have defined the key variables, we can see how population geneticists
analyze changes in those variables through time.

5.2 An elementary population genetic model has 
four main steps

Population geneticists try to answer the following question: if we know the genotype
(or gene) frequencies in one generation, what will they be in the next generation? It 
is worth looking at the general procedure before going into particular models. The pro-
cedure is to break down the time from one generation to the next into a series of stages.
We then work out how genotype frequencies are affected at each stage. We can begin 
at any arbitrarily chosen starting point in generation n and then follow the genotype
frequencies through to the same point in generation n + 1. Figure 5.1 shows the general
outline of a population genetics model.

We start with the frequencies of genotypes among the adults in generation n. The
first step is to specify how these genotypes combine to breed (called a mating rule); the
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(1) Genotype frequencies among adults

Frequencies of matings between genotypes

Frequencies of genotypes in offspring of each type of mating

(2)

(3)

(4)

(5)

Genotype frequencies at birth

Genotype frequencies among adults

Mating rule

Mendelian ratios

Add frequencies of each
genotype for all matings

Any selection by
differential survival

Generation    + 1n

Generation n

Figure 5.1
The general model of
population genetics.
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second step is to apply the Mendelian ratios (Chapter 2) for each type of mating; 
we then add the frequencies of each genotype generated from each type of mating to
find the total frequency of the genotypes among the offspring, at birth, in the next 
generation. If the genotypes have different chances of survival from birth to adulthood,
we multiply the frequency of each genotype at birth by its chance of survival to find the
frequency among the adults. When the calculation at each stage has been completed,
the population geneticist’s question has been answered.

Natural selection can operate in two ways: by differences in survival among genotypes
or by differences in fertility. There are two theoretical extremes. At one, the surviving
individuals of all genotypes produce the same number of offspring, and selection oper-
ates only on survival; at the other, individuals of all genotypes have the same survival,
but differ in the number of offspring they produce (that is, their fertility). Both kinds of
selection probably operate in many real cases, but the models we shall consider in this
chapter all express selection in terms of differences in chance of survival. This is not to
suggest that selection always operates only on survival; it is to keep the models simple
and consistent.

The model, in the general form of Figure 5.1, may look rather complicated. How-
ever, we can cut it down to size by making some simplifying assumptions. The first 
two simplifying assumptions to consider are random mating and no selection (no 
differences in survival between genotypes from stages 4 to 5).

5.3 Genotype frequencies in the absence of selection go to
the Hardy–Weinberg equilibrium

We can stay with the case of one genetic locus with two alleles (A and a). The frequencies
of genotypes AA, Aa, and aa are P, Q, and R. Our question is, if there is random mating
and no selective difference among the genotypes, and we know the genotype frequen-
cies in one generation, what will the genotype frequencies be in the next generation?
The answer is called the Hardy–Weinberg equilibrium. Let us see what that means.

Table 5.1 gives the calculation. The mating frequencies follow from the fact that 
mating is random. To form a pair, we pick out at random two individuals from the
population. What is the chance of an AA × AA pair? Well, to produce this pair, the first
individual we pick has to be an AA and the second one also has to be an AA. The chance
that the first is an AA is simply P, the genotype’s frequency in the population. In a large
population, the chance that the second one is AA is also P.1 The chance of drawing 
out two AA individuals in a row is therefore P2. (The frequency of Aa × Aa and aa × aa
matings are likewise Q2 and R2, respectively.) Similar reasoning applies for the frequen-
cies of matings in which the two individuals have different genotypes. The chance of
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1 “Large” populations are not a separate category from “small” ones; populations come in all sizes. The 

random effects we consider in Chapter 6 become increasingly important as a population becomes smaller.

However, one rough definition of a large population is one in which the sampling of one individual to form a

mating pair does not affect the genotype frequencies in the population: if one AA is taken out, the frequency of

AA in the population, and the chance of picking another AA, remains effectively P.

Population genetic models track
gene frequencies over time

We deduce the frequencies of
pairings, with random pairing . . .
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picking an AA and then an Aa (to produce an AA × Aa pair), for example, is PQ; the
chance of picking an AA and then an aa is PR; and so on.

The genotypic proportions in the offspring of each type of mating are given by the
Mendelian ratios for that cross. We can work out the frequency of a genotype in the
next generation by addition. We look at which matings generate the genotype, and add
the frequencies generated by all the matings. Let us work it out for the genotype AA. AA
individuals, Table 5.1 shows, come from AA × AA, AA × Aa (and Aa × AA), and Aa × Aa
matings. We can ignore all the other types of mating. AA × AA matings have frequency
P2 and produce all AA offspring, AA × Aa and Aa × AA matings each have frequency PQ
and produce 50% AA offspring, and Aa × Aa matings have frequency Q2 and produce
25% AA offspring. The frequency of AA in the next generation,2 P ′, is then:

P ′ = P2 + 1/2PQ + 1/2PQ + 1/4Q2 (5.2)

This can be rearranged to:

P ′ = (P + 1/2Q) (P + 1/2Q)

We have seen that (P + 1/2Q) is simply the frequency of the gene A, p. Therefore:

P ′ = p2
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Table 5.1
Calculations needed to derive the Hardy–Weinberg ratio for one locus and two alleles, 
A and a. (Frequency of AA = P, of Aa = Q, and of aa = R.) The table shows the frequencies of
different matings if the genotypes mate randomly, and the genotype proportions among the
progeny of the different matings.

Mating type Frequency of mating Offspring genotype proportions

AA × AA P2 1 AA
AA × Aa PQ 1/2 AA : 1/2 Aa
AA × aa PR 1 Aa
Aa × AA QP 1/2 AA : 1/2 Aa
Aa × Aa Q2 1/4 AA : 1/2 Aa : 1/4 aa
Aa × aa QR 1/2 Aa : 1/2 aa
aa × AA RP 1 Aa
aa × Aa RQ 1/2 Aa : 1/2 aa
aa × aa R2 1 aa

2 Population geneticists conventionally symbolize the frequency of variables one generation on by writing 

a prime. If P is the frequency of genotype AA in one generation, P ′ is its frequency in the next; if p is the 

frequency of an allele in one generation, p′ is its frequency in the next generation. We shall follow this 

convention repeatedly in this book.

. . . and use Mendel’s rules to
deduce the genotype frequencies in
the offspring
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The frequency of genotype AA after one generation of random mating is equal to the
square of the frequency of the A gene. Analogous arguments show that the frequencies
of Aa and aa are 2pq and q2. The Hardy–Weinberg frequencies are then:

Genotype AA : Aa : aa
Frequency p2 : 2pq : q2

Figure 5.2 shows the proportions of the three different genotypes at different frequen-
cies of the gene a; heterozygotes are most frequent when the gene frequency is 0.5.

The Hardy–Weinberg genotype frequencies are reached after a single generation of
random mating from any initial genotype frequencies. Imagine, for example, two popula-
tions with the same gene frequency but different genotype frequencies. One popula-
tion has 750 AA, 0 Aa, and 250 aa; the other has 500 AA, 500 Aa, and 0 aa. p = 0.75 and
q = 0.25 in both. After one generation of random mating, the genotype frequencies in
both will become 563 AA, 375 Aa, and 62 aa if the population size remains 1,000.
(Fractions of an individual have been rounded to make the numbers add to 1,000. The
proportions are 9/16, 6/16, and 1/16.) After reaching those frequencies immediately, 
in one generation, the population stays at the Hardy–Weinberg equilibrium for as long
as the population size is large, there is no selection, and mating is random.

As we saw in Section 5.1, it is not in general possible to calculate the genotype 
frequencies in a generation if you only know the gene frequencies. We can now see that
it is possible to calculate, from gene frequencies alone, what the genotype frequencies
will be in the next generation, provided that mating is random, there is no selection,
and the population is large. If the gene frequencies in this generation are p and q, in the
next generation the genotype will have Hardy–Weinberg frequencies.

The proof of the Hardy–Weinberg theorem we have worked through was long-
winded. We worked though it all in order to illustrate the general model of population
genetics in its simplest case. However, for the particular case of the Hardy–Weinberg
equilibrium, a more elegant proof can be given in terms of gametes.
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Figure 5.2
Hardy–Weinberg frequencies of genotypes AA, Aa, and aa in
relation to the frequency of the gene a (q).

The result is the Hardy–Weinberg
equilibrium
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Diploid organisms produce haploid gametes. We could imagine that the haploid
gametes are all released into the sea, where they combine at random to form the next
generation. This is called random union of gametes. In the “gamete pool” A gametes
will have frequency p and a gametes frequency q. Because they are combining at 
random, an a gamete will meet an A gamete with chance p and an a gamete with chance
q. From the a gametes, Aa zygotes will therefore be produced with frequency pq and 
aa gametes with frequency q2. A similar argument applies for the A gametes (which
have frequency p): they combine with a gametes with chance q, to produce Aa zygotes 
(frequency pq) and A gametes with chance p to form AA zygotes (frequency p2). If we
now add up the frequencies of the genotypes from the two types of gamete, the Hardy–
Weinberg genotype frequencies emerge. We have now derived the Hardy–Weinberg
theorem for the case of two alleles; the same argument easily extends to three or more
alleles (Box 5.1).

(Some people may be puzzled by the 2 in the frequency of the heterozygotes. It is 
a simple combinatorial probability. Imagine flipping two coins and asking what the
chances are of flipping two heads, or two tails, or one head and one tail. The chance of
two heads is (1/2)2 and of two tails (1/2)2; the chance of a head and a tail is 2 × (1/2)2,
because a tail then a head, and a head then a tail, both give one head and one tail. The
head is analogous to allele A, the tail to a; two heads to producing an AA genotype, and
one head and one tail to a heterozygote Aa. The coin produces heads with probability
1/2, and is analogous to a gene frequency of p = 1/2. The frequency 2pq for hetero-
zygotes is analogous to the chance of one head and one tail, 2 × (1/2)2. The 2 arises
because there are two ways of obtaining one head and one tail. Likewise there are two
ways of producing an Aa heterozygote: either the A gene can come from the father and
the a from the mother, or the a gene from the father and the A from the mother. The
offspring is Aa either way.)

Box 5.1
The Hardy–Weinberg Theorem for Three Alleles

Finally, if we had picked (with chance r) an A3 allele, we produce
A1A3, A2A3, and A3A3 zygotes in frequency pr, qr, and r2.

The only way to form the homozygotes A1A1, A2A2, and A3A3 is by
picking two of the same kind of gamete and the frequencies are p2,
q2, and r2. The heterozygotes can be formed from more than one
kind of first gamete and their frequencies are obtained by addition.
The total chance of forming an A1A3 zygote is pr + rp = 2pr; of
forming an A1A2 zygote is pq + qp = 2pq; and of an A2A3 zygote is
2qr. The complete Hardy–Weinberg proportions are:

A1A1 : A1A2 : A1A3 : A2A2 : A2A3 : A3A3
p2 2pq 2pr q2 2qr r2

We can call the three alleles A1, A2, and A3, and define their gene
frequencies as p, q, and r, respectively. We form new zygotes by
sampling two successive gametes from a large pool of gametes. 
The first gamete we pick could be A1, A2, or A3. If we first pick (with
chance p) an A1 allele from the gamete pool, the chance that the
second allele is another A1 allele is p, the chance that it is an A2
allele is q, and the chance that it is an A3 allele is r : from these three,
the frequencies of A1A1, A1A2, and A1A3 zygotes are p2, pq, and pr.

Now suppose that the first allele we picked out had been an A2
(which would happen with chance q). The chances that the second
allele would again be A1, A2, or A3would be p, q, and r, respectively,
giving A1A2, A2A2, and A2A3 zygotes in frequency pq, q2, and qr.

A simpler proof of the Hardy–
Weinberg equilibrium
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5.4 We can test, by simple observation, whether genotypes
in a population are at the Hardy–Weinberg equilibrium

The Hardy–Weinberg theorem depends on three main assumptions: no selection, 
random mating, and large population size. In a natural population, any of these could
be false; we cannot assume that natural populations will be at the Hardy–Weinberg 
equilibrium. In practice, we can find out whether a population is at the Hardy–
Weinberg equilibrium for a locus simply by counting the genotype frequencies. 
From those frequencies, we first calculate the gene frequencies; then, if the observed
homozygote frequencies equal the square of their gene frequencies, the population is in
Hardy–Weinberg equilibrium. If they do not, it is not.

The MN blood group system in humans is a good example, because the three 
genotypes are distinct and the genes have reasonably high frequencies in human 
populations. Three phenotypes, M, MN, and N are produced by three genotypes (MM,
MN, NN) and two alleles at one locus. The phenotypes of the MN group, like the better
known ABO group, are recognized by reactions with antisera. The antisera are made 
by injecting blood into a rabbit, which then makes an antiserum to the type of blood
that was injected. If the rabbit has been injected with M-type human blood, it produces
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Table 5.2
The frequencies of the MM, MN, and NN blood groups in three American populations. The figures for expected proportions and
numbers have been rounded.

Population MM MN NN Total Frequency M Frequency N

African Americans Observed number 79 138 61 278
Expected proportion 0.283 0.499 0.219 0.532 0.468
Expected number 78.8 138.7 60.8

European Americans Observed number 1,787 3,039 1,303 6,129
Expected proportion 0.292 0.497 0.211 0.54 0.46
Expected number 1,787.2 3,044.9 1,296.9

Native Americans Observed number 123 72 10 205
Expected proportion 0.602 0.348 0.05 0.776 0.224
Expected number 123.3 71.4 10.3

Specimen calculation for African Americans: Frequency of M allele = 79 + (1/2 × 138) = 0.532 = p
Frequency of N allele = 61 + (1/2 × 138) = 0.468 = q

Expected proportion of MM = p2 = (0.532)2 = 0.283
Expected proportion of MN = 2pq = 2(0.532) (0.468) = 0.499
Expected proportion of NN = q2 = (0.468)2 = 0.219

Expected numbers = expected proportion × total number (n) Expected number of MM = p2n = 0.283 × 278 = 78.8
Expected number of MN = 2pqn = 0.499 × 278 = 138.7
Expected number of NN = q2n = 0.219 × 278 = 60.8

Natural populations may or may not
fit the Hardy–Weinberg equilibrium
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anti-M serum. Anti-M serum agglutinates blood from humans with one or two M
alleles in their genotypes; likewise anti-N blood agglutinates the blood of humans with
one or two N alleles. Therefore MM individuals are recognized as those whose blood
reacts only with anti-M, NN individuals react only with anti-N, and MN individuals
react with both.

Table 5.2 gives some measurements of the frequencies of the MN blood group 
genotypes for three human populations. Are they at Hardy–Weinberg equilibrium? 
In European Americans, the frequency of the M gene (calculated from the usual
p = P + 1/2Q relation) is 0.54. If the population is at the Hardy–Weinberg equilibrium,
the frequency of MM homozygotes (p2) will be 2 × 0.54 = 0.2916 (1,787 in a sample 
of 6,129 individuals); and the frequency of MN heterozygotes (2pq) will be 2 × 0.54 ×
0.46 = 0.497 (3,045 in a sample of 6,129). As the table shows, these are close to the
observed frequencies. In fact all three populations are at Hardy–Weinberg equilibrium.
We shall see in Section 5.6 that the same calculations do not correctly predict the geno-
type frequencies after selection has operated.

5.5 The Hardy–Weinberg theorem is important
conceptually, historically, in practical research, 
and in the workings of theoretical models

We have just seen how to find out whether a real population is in Hardy–Weinberg
equilibrium. The importance of the Hardy–Weinberg theorem, however, is not mainly
as an empirical prediction. We have no good reason to think that genotypes in natural
populations will generally have Hardy–Weinberg frequencies, because it would require
both no selection and random mating, which are rarely found. The interest of the 
theorem lies elsewhere, in three other areas.

One is historical and conceptual. We saw in Section 2.9 (p. 37) how with blending
inheritance the genetic variation in a population is rapidly blended out of existence 
and the population becomes genetically uniform. With Mendelian genetics, variation 
is preserved and the Hardy–Weinberg theorem gives quantitative demonstration of
that fact. The theorem was published in the first decade of the twentieth century, as
Mendelism was becoming accepted, and it was historically influential in proving to
people that Mendelian inheritance did allow variation to be preserved.

A second interest of the theorem is as a kind of springboard, that launches us toward
interesting empirical problems. If we compare genotype frequencies in a real popula-
tion with Hardy–Weinberg ratios, then if they deviate it suggests something interesting
(such as selection or non-random mating) may be going on, which would merit further
research.

A third interest is theoretical. In the general model of population genetics (Sec-
tion 5.2) there were five stages, joined by four calculations. The Hardy–Weinberg 
theorem simplifies the model wonderfully. If we assume random mating, we can go
directly from the adult frequencies in generation n to the genotype frequencies at birth
in generation n + 1, collapsing three calculations into one (Figure 5.3). If we know the
adult genotype frequencies in generation n (stage 1), we only need to calculate the gene
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The MN human blood group system
is close to Hardy–Weinberg
equilibrium

The Hardy–Weinberg theorem
matters conceptually, . . .

. . . in research . . .

. . . and in theory

EVOC05  11/01/2005  11:11  Page 103



frequencies: the genotype frequencies at birth in the next generation (stage 2) must
then have Hardy–Weinberg frequencies, because the gene frequencies do not change
between the adults of one generation and the newborn members of the next generation.
A simple model of selection can concentrate on how the genotype frequencies are
modified between birth and the adult reproductive stage (from stage 2 to stage 3 of
Figure 5.3).

5.6 The simplest model of selection is for one favored
allele at one locus

We shall start with the simplest case. It is the case of natural selection operating on only
one genetic locus, at which there are two alleles, one dominant to the other. Suppose
that individuals with the three genotypes have the following relative chances of survival
from birth to the adult stage:

Genotype Chance of survival
AA, Aa 1
aa 1 − s

s is a number between 0 and 1, and is called the selection coefficient. Selection
coefficients are expressed as reductions in fitness relative to the best genotype. If s is 0.1
then aa individuals have a 90% chance of survival, relative to 100% for AA and Aa indi-
viduals. These are relative values: in a real case the chance of survival from birth to
reproduction of an individual with the best genotype might be 50%, much less than
100%. If it was 50%, then an s of 0.1 would mean that aa individuals really had a 45%
chance of survival. (The convention of giving the best genotype a relative 100% chance
of survival simplifies the algebra. If you are suspicious, check whether it makes any dif-
ference in what follows if the chances of survival are 50%, 50%, and 45% for AA, Aa,
and aa, respectively, rather than 100%, 100%, and 90%.) The chance of survival is the
fitness of the genotype (we are assuming that all surviving individuals produce the same
number of offspring). Fitnesses are, like the chances of survival, expressed relative to a
figure of 1 for the best genotype. This can be spelled out more by referring to fitnesses as
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Generation    + 1n

Generation n (1) Genotype frequencies among adults

Genotype freqencies at birth(2)

(3)

Hardy–Weinberg
 theorem

Differential
 survival

Genotype frequencies among adults
Figure 5.3
The general model of population genetics simplified by the
Hardy–Weinberg theorem.

Population genetic models specify
the fitness of all genotypes
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“relative fitnesses.” However, biologists usually just say “fitness.” With the fitnesses
given above, selection will act to eliminate the a allele and fix the A allele. (To “fix” a
gene is genetic jargon for carry its frequency up to 1. When there is only one gene at a
locus, it is said to be “fixed” or in a state of “fixation.”) If s were 0, the model would
lapse back to the Hardy–Weinberg case and the gene fequencies would be stable.

Notice that alleles do not have any tendency to increase in frequency just because
they are dominant, or to decrease because they are recessive. Dominance and recessiv-
ity only describe how the alleles at a locus interact to produce a phenotype. Changes in
gene frequency are set by the fitnesses. If the recessive homozygote has higher fitness,
the recessive allele will increase in frequency. If, as here, the recessive homozygote has
lower fitness, the recessive allele decreases in frequency.

How rapidly will the population change through time? To find out, we seek an
expression for the gene frequency of A (p′) in one generation in terms of its frequency
in the previous generation (p). The difference between the two, ∆p = p′ − p, is the
change in gene frequency between two successive generations. The model has the form
of Figure 5.3, and we shall work through both the general algebraic version and a
numerical example (Table 5.3).

To begin with, at birth the three genotypes have Hardy–Weinberg frequencies 
as they are produced by random mating among adults of the previous generation.
Selection then operates; aa individuals have a lower chance of survival and their fre-
quency among the adults is reduced. As the numerical example shows (Table 5.3b), the
total number of adults is less than the number at birth and we have to divide the adult
numbers of each genotype by the total population size to express the adult numbers as
frequencies comparable to the frequencies at birth. In the algebraic case, the relative
frequencies after selection do not add up to 1, and we correct them by dividing by the
mean fitness.
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Table 5.3
(a) Algebraic calculation of genotype frequences after selection, with selection against a recessive genotype. (b) A numerical
illustration. See text for further explanation.

(a) (b)

Genotype Genotype

AA Aa aa AA Aa aa Total

Birth Birth
Frequency p2 2pq q2 Number 1 18 81 100
Fitness 1 1 1 − s Frequency 0.01 0.18 0.81

Fitness 1 1 0.9

Adult Adult
Relative frequency p2 2pq q2(1 − s) Number 1 18 73 92
Frequency p2/(1 − sq2) 2pq/(1 − sq2) q2(1 − s)/(1 − sq2) Frequency 1/92 18/92 73/92

We construct a model for the
change in gene frequency per
generation
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Mean fitness = p2 + 2pq + q2(1 − s) = 1 − sq2 (5.3)

Dividing by mean fitness in the algebraic case is the same as dividing by the population
size after selection in the numerical example. Notice that now the adult genotype fre-
quencies are not in Hardy–Weinberg ratios. If we tried to predict the proportion of aa
from q2, as in the MN blood group (Section 5.4), we should fail. The frequency of aa is
q2(1 − s)/1 − sq2, not q2.

What is the relation between p′ and p? Remember that the frequency of the gene A at
any time is equal to the frequency of AA plus half the frequency of Aa. We have just
listed those frequencies in the adults after selection:

(5.4)

(remember p + q = 1, and therefore p2 + pq = p(p + q) = p.) The denominator 1 − sq2 is
less than 1, because s is positive, so p′ is greater than p: selection is increasing the fre-
quency of the A gene. We can now derive a result for ∆p, the change in gene frequency
in one generation. The algebra looks like this.

(5.5)

For example, if p = q = 0.5 and aa individuals have fitness 0.9 compared with AA and Aa
individuals (s = 0.1) then the change in gene frequency to the next generation will be
(0.1 × 0.5 × (0.5)2)/(1 − 0.1 × (0.5)2) = 0.0128; the frequency of A will therefore increase
to 0.5128.

We can use this result to calculate the change in gene frequency between successive
generations for any selection coefficient (s) and any gene frequency. The result in this
simple case is that the A gene will increase in frequency until it is eventually fixed (that
is, has a frequency of 1). Table 5.4 illustrates how gene frequencies change when selec-
tion acts against a recessive allele, for each of two selection coefficients. There are two
points to notice in the table. One is the obvious one that with a higher selection
coefficient against the aa genotype, the A gene increases in frequency more rapidly. The
other is the more interesting observation that the increase in the frequency of A slows
down when it becomes common, and it would take a long time finally to eliminate the a
gene. This is because the a gene is recessive. When a is rare it is almost always found in
Aa individuals, who are selectively equivalent to AA individuals: selection can no
longer “see” the a gene, and it becomes more and more difficult to eliminate them.
Logically, selection cannot eliminate the one final a gene from the population, because
if there is only one copy of the gene it must be in a heterozygote.
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Just as equation 5.4 can be used to calculate a gene frequency change given the
fitnesses, so it can be used to calculate the fitnesses given the frequency changes. If 
we know the gene frequency in two successive generations then equations 5.4 and 5.5
can be rearranged to:

(5.6)

to find s.
Haldane (1924) first produced this particular model of selection. One important

feature of the model is that it shows how rapidly, in evolutionary time, natural selec-
tion can produce change. When we look at the complex organs and behavior patterns
of living creatures, including ourselves, it is easy to wonder whether there has really
been enough time for them to have evolved in the manner suggested by Darwin’s 
theory. To find out, for any particular organ, such as the heart, liver, or brain, we need
answers to two questions: (i) how many genetic changes did its evolution require; and
(ii) how long did each change take.

A model like the one in this section gives us an idea of the answer to the second ques-
tion. (We shall look more at the first question in Section 10.5, p. 266.) The fitness differ-
ences of 1–5% in Table 5.4 are small, relative to many of the risks we take though our
lives; but they are enough to carry a gene up from being negligibly rare to being the
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Table 5.4
A simulation of changes in gene frequency for selection against the recessive gene a, 
using two selection coefficients: s = 0.05 (i.e., aa individuals have a relative chance of survival of
95%, against 100% for AA and Aa) and s = 0.01 (i.e., aa individuals have a relative chance of
survival of 99%, against 100% for AA and Aa). The change between generation 0 and 100 is
found by applying the equation in the text 100 times successively.

Gene frequency, Gene frequency, 
s = 0.05 s = 0.01

Generation A a A a

0 0.01 0.99 0.01 0.99
100 0.44 0.56 0.026 0.974
200 0.81 0.19 0.067 0.933
300 0.89 0.11 0.15 0.85
400 0.93 0.07 0.28 0.72
500 0.95 0.05 0.43 0.57
600 0.96 0.04 0.55 0.45
700 0.96 0.04 0.65 0.35
800 0.97 0.03 0.72 0.28
900 0.97 0.03 0.77 0.23

1,000 0.98 0.02 0.80 0.20

We need to know more to
understand completely the rate of
evolution of whole organs
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majority form in the population in 1,000 to 10,000 generations. On the evolutionary
timescale, 10,000 generations are an eye-blink: too short a period to be resolved in the
fossil record. A quantitative model such as Haldane’s was needed to answer the quanti-
tative question of how rapidly selection can drive evolution.

The model can be extended in various ways. The modifications for different degrees
of dominance, and separate selection on heterozygotes and homozygotes, are con-
ceptually straightforward, though they make the algebra more complex. Other modi-
fications can be made to analyze the other stages in the general picture of Figure 5.1: 
to analyze non-random mating, non-Mendelian inheritance, or fitnesses that vary
according to fertility rather than survival. However, for our purposes it is mainly
important to see how an exact model of selection can be built and exact predictions
made from it. The model is simplified, but it can help us to understand a number of real
cases a as we shall now see.

5.7 The model of selection can be applied to the 
peppered moth

5.7.1 Industrial melanism in moths evolved by natural selection

The peppered moth Biston betularia provides one of the best known stories in evolu-
tionary biology (Figure 5.4). In collections made in Britain in the eighteenth century,
the form of the moth was always a light, peppered color. A dark (melanic) form was first
recorded in 1848 near Manchester. That melanic form then increased in frequency until
it made up more than 90% of the populations in polluted areas in the mid-twentieth
century. In unpolluted areas, the light form remained common. Clean air laws were
passed in the mid-twentieth century, and the frequency of the melanic form decreased
in formerly polluted areas.

The peppered moth can be used to illustrate the simple model of the previous sec-
tion. A controversy has grown up about the peppered moth concerning the reason why
the melanic and light-colored moths differed in fitness, although this does not matter
while we are simply estimating fitnesses. The increase in frequency of the melanic form
in polluted areas has classically been explained by bird predation. Some doubts have
been raised about the evidence for this view. Section 5.7.4 looks at the controversy, but
we begin by looking at estimates of fitness. All we need to know for these estimates is
that natural selection is acting a just how it is acting, whether by bird predators or
other factors, is another question.

Before we can apply the theory of population genetics to a character, we need to
know its genetics. Breeding experiments initially suggested that the difference in color
was controlled by one main locus. The original, peppered form was one homozygote
(cc) and the melanic form was another homozygote (CC), and the C allele is dominant.
However, in other experiments the melanic allele was less dominant and the hetero-
zygotes were intermediate; there seem to be a number of different melanic alleles. It may
be that selection initially favored a melanic allele with no or weak dominance, and sub-
sequently some other melanic alleles with stronger dominance. In any case, the degree
of dominance of the melanic allele that was originally favored in the nineteenth century

108 PART 2 / Evolutionary Genetics

..

The model can be extended

We can estimate the fitness
differences during peppered moth
evolution

EVOC05  11/01/2005  11:11  Page 108



is uncertain, and it may have differed from the dominance shown by the melanic alleles
that exist in modern populations.

The first estimates of fitnesses were made by Haldane (1924), and he dealt with the
problem of varying degrees of dominance by making two estimates of fitness, one
assuming that the C allele is dominant and the other assuming that the heterozygote 
is intermediate. The real average degree of dominance was probably between the two.
Here we shall look only at the estimate for a dominant C gene.

5.7.2 One estimate of the fitnesses is made using the rate of 
change in gene frequencies

What were the relative fitnesses of the genes controlling the melanic and light colora-
tion during the phase from the early nineteenth to the mid-twentieth centuries, while
the melanic form increased in frequency in polluted areas? For the first method we need
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Figure 5.4
Peppered moths naturally settle on the undersides of twigs 
in higher branches of trees (and not on tree trunks, as is
sometimes said). Melanic forms are better camouflaged in
polluted areas: compare (a) the peppered form and (b) the

melanic form, both photographed in a polluted area. (c) and
(d) show that peppered forms are well camouflaged in
unpolluted areas. Reprinted, by permission of the publisher,
from Brakefield (1987).
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measurements of the frequencies of the different color forms for at least two times. We
can then estimate the gene frequencies from the genotype frequencies, and substitute
them in equation 5.6 to solve s, the selection coefficient.

The melanic form was first seen in 1848; but it was probably not a new muta-
tion then. It probably existed at a low frequency in the population, in what is called
“mutation–selection balance.” Mutation–selection balance means that the gene is dis-
advantageous, and exists at a low frequency determined by a balance between being
formed by mutation and being lost by selection (Section 5.11). We shall see that the fre-
quency of a gene can be calculated from its mutation rate m and its selective disadvant-
age s. The values of m and s are unknown for the gene in the early nineteenth century.
However, typical mutation rates for genes are about 10−6 and a selective disadvantage of
about 10% for the melanic mutants in preindustrial times may be approximately cor-
rect. With these figures, and using equation 5.9 below, the melanic C gene would have
had a frequency of 10−5 up to the year 1848. By 1898, the frequency of the light-colored
genotype was 1–10% in polluted areas (it was not more than 5% near the industrial city
of Manchester, for example, implying a gene frequency of about 0.2). There would have
been about 50 generations between 1848 and 1898.

We now know all we need. What selective coefficient would generate an increase 
in its frequency from 10−5 to 0.8 in 50 generations? Equation 5.6 gives the selection
coefficient in terms of gene frequencies in two successive generations, but between
1848 and 1898 there would have been 50 generations. The formula therefore has to be
applied 50 times over, which is most easily done by computer. A change from 10−5 to
0.8 in 50 generations, it turns out, requires s ≈ 0.33: the peppered moths had two-thirds
the survival rate of melanic moths (Table 5.5). The calculations are rough, but they
show how fitness can be inferred from the observed rate of change in gene frequency.
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Table 5.5
Theoretical changes in gene frequencies in the evolution of melanism in the peppered moth,
starting with an initial frequency of C of 0.00001 (rounded to 0 in the table). C is dominant and
c is recessive: genotypes CC and Cc are melanic and cc is peppered in color. 1848 is generation
zero in the simulation. Selection coefficient s = 0.33.

Gene frequency

Generation date C c

1848 0.00 1.00
1858 0.00 1.00
1868 0.03 0.97
1878 0.45 0.55
1888 0.76 0.24
1898 0.86 0.14
1908 0.90 0.10
1918 0.92 0.08
1928 0.94 0.06
1938 0.96 0.04
1948 0.96 0.04

The observed gene frequency
changes suggest s ≈ 0.33
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5.7.3 A second estimate of the fitnesses is made from the 
survivorship of the different genotypes in mark–
recapture experiments

The estimate of fitness can be checked against other estimates. The gene frequency
change was (and still is) thought to be produced by survival differences between the
two forms of moth in nature, rather than differential fertility. We can measure the 
rate of survival of the two forms in nature, and see how they differ. Kettlewell (1973)
measured survival rates by mark–recapture experiments in the field. He released
melanic and light-colored peppered moths in known proportions in polluted and
unpolluted regions, and then later recaught some of the moths (which are attracted to
mercury vapor lamps). He counted the proportions of melanic and light-colored
moths in the moths recaptured from the two areas.

Table 5.6 gives some results for two sites, Birmingham (polluted) and Deanend
Wood, an unpolluted forest in Dorset, UK. The proportions in the recaptured moths
are as we would expect: more light-colored moths in the Deanend Wood samples and
more melanic moths in the Birmingham samples. In Birmingham, melanic moths were
recaptured at about twice the rate of light-colored ones, implying s = 0.57. This is a
higher fitness difference than the s = 0.33 implied by the change in gene frequency.
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Table 5.6
Frequencies of melanic and light peppered moths in samples recaptured at two sites in the 
UK: Birmingham (polluted) and Deanend Wood, Dorset (unpolluted). The observed 
numbers are the actual numbers recaught; the expected numbers are the numbers that 
would have been recaught if all morphs survived equally (equals proportion in released 
moths times the number of moths recaptured). The recaptured moths at Birmingham 
were taken over a period of about 1 week, at Deanend Wood over about 3 weeks. Data 
from Kettlewell (1973).

Light moths Melanic moths

Birmingham (polluted)
Numbers recaptured

Observed 18 140
Expected 36 122

Relative survival rate 0.5 1.15

Relative fitness 5/1.15 = 0.43 1.15/1.15 = 1

Deanend wood (unpolluted)
Numbers recaptured

Observed 67 32
Expected 53 46

Relative survival rate 1.26 0.69

Relative fitness 1.26/1.26 = 1 0.69/1.26 = 0.55

Mark–recapture experiments
suggest s ≈ 0.57
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The discrepancy is unsurprising because both estimates are uncertain; it could have 
a number of causes. Possible causes include sampling error in the mark–recapture
experiments (the numbers in Table 5.6 are small) and errors in the assumptions of the
estimate from gene frequency changes. For instance, the initial gene frequency may
have been less than 10−5. Also, the relative fitness of the two moth forms probably
changed over time and moths may have migrated between polluted and unpolluted
areas. Whatever the cause of the discrepancy, the two calculations do illustrate two
important methods of estimating fitness.

5.7.4 The selective factor at work is controversial, but bird predation
was probably influential

So far we have concentrated on estimating fitnesses, and have ignored the factors 
that cause the fitness difference between the melanic and light-colored forms of the
moth. The material thus far is uncontroversial. The gene frequency changes have
undoubtedly occurred, and provide an excellent example of evolution by natural 
selection. Now we can move on to ask what the agent, or agents, of natural selection
were in this example.

The classic answer, due to the research of Kettlewell (1973), has been bird predation.
The light-colored form is better camouflaged in unpolluted woods and therefore less
likely to be eaten by visually hunting birds. But smoke pollution killed the lichens that
covered the trees, after which the melanic form was better camouflaged (Figure 5.4).
Several lines of evidence support Kettlewell’s explanation. Birds do eat the moths, 
and have been photographed in the act. Birds also have been shown to take more of 
the poorly camouflaged form, in various experimental set-ups. Also, the gene fre-
quency changes closely match the rise and fall of air pollution. The melanic form
increased in frequency following the industrial revolution, and then decreased in 
frequency after air pollution decreased in the late twentieth century. Indeed, the case
for Kettlewell’s explanation is arguably now stronger than when he worked. The
decrease in frequency of the melanic form has become particularly clear from 1970 to
2000, adding a new line of evidence that was unavailable to Kettlewell (whose main
work was in the 1950s).

However, not everyone accepts that bird predation is the selective agent. Some of
Kettlewell’s research has itself been criticized. We looked above at fitness estimates
from gene frequency changes and from mark–recapture experiments. Kettlewell and
others also estimated fitnesses by pinning out dead moths of the two forms on tree
trunks in polluted and unpolluted areas. He then measured how many moths of each
form disappeared over time. These experiments were particularly criticized after it was
discovered in the 1980s that peppered moths do not naturally settle on tree trunks, 
but on the higher branches and twigs of trees (Figure 5.4). Other criticisms were also
made. However, Kettlewell’s case does not depend on these pin-out experiments. As we
saw, he also did mark–recapture experiments in which he released live moths. Those
moths presumably settled, and behaved, in a natural manner. The results of all the
experiments a pin-outs and mark–recapture a were similar, so the fact that the moths
were pinned out in the wrong place did not bias the fitness estimates.
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Cook (2000) reviewed about 30 experimental fitness estimates, done by several
teams of biologists,3 and they all gave similar results. The fitness estimates for the two
forms of the peppered moth are about the most repeated result in evolutionary biology,
and do not depend on the details of any particular experiment. The repeated results
amount to an almost overwhelming case that the rise and fall of the melanic form of the
peppered moth depended on air pollution. The evidence that air pollution exerted its
effect via bird predation is also strong, if not overwhelming.

Evidence has also been put forward for other factors, in addition to bird predation.
Migration is one extra factor. The geographic distribution of the two forms does not
exactly fit Kettlewell’s theory. The melanic form, for example, had a frequency of up to
80% in East Anglia, where pollution is low (Figure 5.5). And in some polluted areas, the
dark form did not seem to have a high enough frequency. It never exceeded about 95%
even though it was clearly better camouflaged and ought for that reason to have had a
frequency of 100%. However, male moths can fly long distances to find females, and a
male peppered moth mates on average 1.5 miles (2.5 km) away from where it is born.
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Figure 5.5
Frequency of melanic and light-colored forms of the peppered
moth in different parts of Britain when the frequency of the
melanic form was near its peak. The green part of each pie
diagram is the frequency of the melanic form in that area. 
Melanic moths are generally higher in industrial areas, such 
as central England; but note the high proportion in East Anglia.
Melanic frequencies have subsequently decreased (see Figure 5.6,
for instance). Redrawn, by permission of the publisher, from Lees
(1971).

3 It has even been suggested that Kettlewell faked his results. The charge has only been supported by indirect

evidence that is open to innocent interpretations. But however that may be, Kettlewell’s explanation for evolu-

tion in the peppered moth a bird predation a does not depend on Kettlewell’s own research. His results have

been independently repeated.

The fitness estimates have been
repeated many times

Other factors have been suggested
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Migration may explain why melanic moths are found in some unpolluted areas such as
East Anglia and why light-colored moths persisted in polluted areas where they were
less well camouflaged.

A second additional factor is that the two forms may differ in fitness independently
of bird predation. Creed et al. (1980) collected all the measurements that had been made
on survival to adulthood in the laboratory. They analyzed the results of 83 broods, 
containing 12,569 offspring; the original measurements had been made by many dif-
ferent geneticists in the previous 115 years. The viability of light-colored homozygotes,
it turned out, was about 30% less on average than that of the melanic homozygote in
the laboratory, where there is no bird predation a the reason is not known, but the fact
alone implies there is some “inherent” advantage to the melanic genotype. The fitness
advantage detected in the lab implies that melanic moths would replace light ones even
without bird predation in polluted areas. In unpolluted areas, light-colored moths may
remain only because birds eat more of the conspicuous melanic moths.

Some biologists have suggested that three factors a bird predation, inherent 
advantage to melanic genotypes, and migration a are needed to explain peppered moth
evolution. The importance of migration in addition to bird predation is generally
accepted, but the inherent advantage to the melanic form is controversial. Since the
measurements compiled in Creed et al. (1980) were made, the decrease in the melanic
form’s frequency has been more and more widely documented. The decrease did not
happen around the formerly industrial Manchester region until the 1990s (Figure 5.6).
The decrease makes sense if the advantage to the melanic form depends on air pollu-
tion, but not if it has an inherent advantage. Therefore, other biologists explain the
observations in terms of bird predation (supplemented by migration) alone, and rule
out the inherent advantage.

In conclusion, the industrial melanism of the peppered moth is a classic example 
of natural selection. It can be used to illustrate the one-locus, two-allele model of 
selection. The model can be used to make a rough estimate of the difference in fitness
between the two forms of moth using their frequencies at different times; the fitnesses
can also be estimated from mark–recapture experiments. Good evidence exists that
bird predation is at least partly the agent of selection, but some biologists suggest other
factors are at work too.
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Figure 5.6
Decrease in frequency of the melanic form of the peppered moth
in the region around Manchester. The decrease did not become
really noticeable until about 1990. Redrawn, by permission of the
publisher, from Cook et al. (1999).

The melanic form may have an
“inherent” advantage

But the decrease in melanic
frequency since the air became
cleaner supports the classic
explanation
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5.8 Pesticide resistance in insects is an example of 
natural selection

Malaria is caused by a protozoan blood parasite (Section 5.12.2), and humans are
infected with it by mosquitoes (family Culicidae a genera include Aedes, Anopheles,
Culex). It can therefore be prevented by killing the local mosquito population, and
health workers have recurrently responded to malarial outbreaks by spraying insecti-
cides such as DDT in affected areas. DDT, sprayed on a normal insect, is a lethal nerve
poison. When it is first sprayed on a local mosquito population, the population goes
into abrupt decline. What happens then depends on whether DDT has been sprayed
before.

On its first use, DDT is effective for several years; in India, for example, it remained
effective for 10–11 years after its first widespread use in the late 1940s. DDT, on a global
scale, was one reason why the number of cases of malaria reduced to 75 million or so
per year by the early 1960s. But by then, DDT-resistant mosquitoes had already begun
to appear. DDT-resistant mosquitoes were first detected in India in 1959, and they have
increased so rapidly that when a local spray program is begun now, most mosquitoes
become resistant in a matter of months rather than years (Figure 5.7). The malarial
statistics reveal the consequence. The global incidence of the disease almost exploded,
up to somewhere between 300 and 500 million people at present. Malaria currently kills
over 1 million people per year, mainly children aged 1–4 years. Pesticide resistance was
not the only reason for the increase, but it was important.

DDT becomes ineffective so quickly now because DDT-resistant mosquitoes exist at
a low frequency in the global mosquito population and, when a local population is
sprayed, a strong force of selection in favor of the resistant mosquitoes is immediately
created. It is only a matter of time before the resistant mosquitoes take over. A graph
such as Figure 5.7 allows a rough estimate of the strength of selection. As for the 
peppered moth, we need to understand the genetics of the character, and to measure
the genotype frequencies at two or more times. We can then use the formula for gene
frequency change to estimate the fitness.
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Figure 5.7
Increase in frequency of pesticide resistance in mosquitoes
(Anopheles culicifacies) after spraying with DDT. A sample of
mosquitoes was captured at each time indicated and the number
that were killed by a standard dose of DDT (4% DDT for 1 hour)
in the laboratory was measured. Redrawn, by permission of the
publisher, from Curtis et al. (1978).

Pests, such as mosquitoes, evolve
resistance to pesticides, such as
DDT

The fitnesses can be estimated, . . .

EVOC05  11/01/2005  11:11  Page 115



We have to make a number of assumptions. One is that resistance is controlled by a
single allele (we shall return to this below). Another concerns the degree of dominance:
the allele conferring resistance might be dominant, recessive, or intermediate, relative
to the natural susceptibility allele. The case of dominant resistance is easiest to under-
stand. (If resistance is recessive we follow the same general method, but the exact result
differs.) Let us call the resistance allele R and the susceptibility allele r. All the
mosquitoes that die, in the mortality tests used in Figure 5.7, would then have been
homozygous (rr) for susceptibility. Assuming (for simplicity rather than exact accur-
acy) Hardy–Weinberg ratios, we can estimate the frequency of the susceptibility gene as
the square root of the proportion of mosquitoes that die in the tests. The selection
coefficients are defined as follows, where fitness is measured as the chance of survival 
in the presence of DDT:

Genotype RR Rr rr
Fitness 1 1 1 − s

If we define p as the frequency of R and q as the frequency of r, equation 5.5 again gives
the change in gene frequency: selection is working against a recessive gene. Figure 5.7
shows the decline in frequency of the susceptible mosquitoes, which are the recessive
homozygotes. We therefore need a formula for the change in q in one generation (∆q),
rather than ∆p (as on p. 106). The decrease in q is the mirror image of the increase in p,
and we just need to put a minus sign in front of equation 5.5:

(5.7)

The generation time is about 1 month. (The generations of mosquitoes overlap,
rather than being discrete as the model assumes; but the exact procedure is similar in
either case, and we can ignore the detailed correction for overlapping generations.)
Table 5.7 shows how the genotype frequencies were read off Figure 5.7 in two stages,
giving two estimates of fitness. Again, the formula for one generation has to be applied
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Table 5.7
Estimated selection coefficients against DDT-susceptible Anopheles culicifacies, from 
Figure 5.7, where the relative fitness of the susceptible type is (1 − s). The estimate assumes the
resistance allele is dominant. Simplified from Curtis et al. (1978).

Frequency of 
susceptible type

Before After Time (months) Selection coefficient

0.96 0.56 8.25 0.4
0.56 0.24 4.5 0.55

. . . given certain assumptions

The selection coefficient s ≈ 0.5

EVOC05  11/01/2005  11:11  Page 116



recurrently, for 8.25 and 4.5 generations in this case, to give an average fitness for the
genotypes through the period. It appears that in Figure 5.7 the resistant mosquitoes had
about twice the fitness of the susceptible ones a which is very strong selection.

The genetics of resistance in this case are not known, and the one-locus, two-allele
model is an assumption only; but they are understood in some other cases. Resistance is
often controlled by a single resistance allele. For example, Figure 5.8 shows that the
resistance of the mosquito Culex quinquifasciatus to permethrin is due to a resistance
(R) allele, which acts in a semidominant way, with heterozygotes intermediate between
the two homozygotes. In houseflies, resistance to DDT is due to an allele called kdr. kdr
flies are resistant because they have fewer binding sites for DDT on their neurons. In
other cases, resistance may be due not to a new point mutation, but to gene amplifica-
tion. Culex pipiens, for instance, in one experiment became resistant to an organophos-
phate insecticide called temephos because individuals arose with increased numbers of
copies of a gene for an esterase enzyme that detoxified the poison. In the absence of
temephos, the resistance disappeared, which suggests that the amplified genotype has
to be maintained by selection. A number of mechanisms of resistance are known, and
Table 5.8 summarizes the main ones that have been identified.

When an insect pest has become resistant to one insecticide, the authorities often
respond by spraying it with another insecticide. The evolutionary pattern we have seen
here then usually repeats itself, and on a shorter timescale. On Long Island, New York,
for example, the Colorado potato beetle (Leptinotarsa septemlineata) was first attacked
with DDT. It evolved resistance to it in 7 years. The beetles were then sprayed with 
azinphosmethyl, and evolved resistance in 5 years; next came carbofuran (2 years),
pyrethroids (another 2 years), and finally pyrethroids with synergist (1 year). The
decreasing time to evolve resistance is probably partly due to detoxification mechan-
isms that work against more than one pesticide. Pesticides cost money to develop, and
the evolution of resistance reduces the economic lifetime of a pesticide. Box 5.2 looks at
how the lifetime of a pesticide may be lengthened by slowing the evolution of resistance.

Insecticide resistance matters not only in the prevention of disease, but also in farm-
ing. Insect pests at present destroy about 20% of world crop production, and it has been
estimated that in the absence of pesticides as much as 50% would be lost. Insect pests
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Figure 5.8
The mortality of mosquitos
(Culex quinquifasciatus) of
three genotypes at a locus 
when exposed to various
concentrations of permethrin.
The susceptible homozygote
(SS) dies at lower
concentrations of the poison
than the resistant homozygote
(RR). The heterozygote (RS)
has intermediate resistance.
Redrawn, by permission of the
publisher, from Taylor (1986).

The real genetics of resistance is
known in some cases

The theory has practical
applications
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are a major economic and health problem. The evolution of resistance to pesticides
causes misery to millions of people, whether through disease or reduced food supply.
The fact that insects can rapidly evolve resistance is not the only problem with using
pesticides against pests a the pesticides themselves (as is well known) can cause ecolog-
ical side effects that range from the irritating to the dangerous. But however that may
be, pesticides did not exist during the hundreds of millions of years that insects lived 
for before they were introduced in the 1940s, and the rapid evolution since then of 
resistance to pesticides provides a marvellously clear example of evolution by natural
selection (Section 10.7.3, p. 276, extends the story, and Box 8.1, p. 213, looks at drug
resistance in the malaria organism itself).

5.9 Fitnesses are important numbers in evolutionary
theory and can be estimated by three main methods

The fitness of a genotype, in the theory and examples we have met, is its relative 
probability of survival from birth to adulthood. The fitness also determines the change
in gene frequencies between generations. These two properties of fitness allow two
methods of measuring it.

Table 5.8
The main mechanisms of resistance to insecticides. Reprinted, by permission of the publisher,
from Taylor (1986).

Mechanism Insecticides affected

Behavioral
Increased sensitivity to insecticide DDT
Avoid treated microhabitats Many

Increased detoxification
Dehydrochlorinase DDT
Microsome oxidase Carbamates

Pyrethroids
Phosphorothioates

Glutathione transferase Organophosphates (O-dimethyl)
Hydrolases, esterases Organophosphates

Descreased sensitivity of target site
Acetylcholinesterase Organophosphates

Carbamates
Nerve sensitivity DDT

Pyrethroids
Cyclodiene-resistance genes Cyclodienes (organochlorines)

Decreased cuticular penetration Most insecticides

Fitness can be measured . . .

EVOC05  11/01/2005  11:11  Page 118



The first method is to measure the relative survival of the genotypes within a genera-
tion. Kettlewell’s mark–recapture experiment with the peppered moth is an example. If
we assume that the relative rate of recapture of the genotypes is equal to their relative
chance of survival from egg to adulthood, we have an estimate of fitness. The assump-
tion may be invalid. The genotypes may, for instance, differ in their chances of survival
at some stage of life other than the time of the mark–recapture experiment. If the sur-
vival of adult moths is measured by mark–recapture, any differences among genotypes
in survival at the egg and caterpillar stages will not be detected. Also, the genotypes may
differ in fertility: fitnesses estimated by differences in survival are only accurate if all the
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Box 5.2
Resistance Management

2. The relative fitness of the resistant
and non-resistant genotypes. A
genotype with a large fitness advant-
age will increase in frequency more
rapidly than one with a low fitness
advantage. For instance, in Table 5.4
we can see that a genotype with a 1%
advantage takes five times as long to
reach a frequency of 80% than does
a genotype with a 5% advantage.

Thus the evolution of resistance could
be slowed down if we could make the
resistance gene more recessive (or less
dominant), and if we could reduce its
fitness advantage relative to the non-
resistant types.

One way to make the resistance gene
recessive might be to apply the pesti-
cide in large doses. The resistance gene
may code for a protein that somehow
neutralizes the pesticide. If there are
small quantities of pesticide, a single
copy of the resistance gene (in a het-
erozygote) may produce enough of 
the protein to cope with the pesticide.
The gene is then effectively dominant,
because it produces resistance in het-
erozygotes. The gene will spread fast.
But if large amounts of the pesticide 
are used, the single gene may be over-
whelmed. Two resistance genes (in a

The evolution of resistance to each new
pesticide, and antibiotic, is probably
ultimately inevitable. However, we may
be able to prolong the economically
useful lives of these defensive chemicals
by slowing down the evolution of resist-
ance. The time it takes for resistance 
to evolve will be influenced by several
factors. Two such factors can be seen in
the simple models of selection we have
been considering.
1. The degree of genetic dominance.

The frequency of an advantageous
dominant gene increases much more
rapidly by natural selection than does
the frequency of an advantageous
recessive gene. An advantageous
gene, such as one producing re-
sistance to a pesticide, will initially 
be present only in one copy, in a 
heterozygote. If the gene is recessive,
it is not expressed in that hetero-
zygote. Natural selection cannot
“see” the gene until it is found in a
homozygote. If the gene is domin-
ant, it is immediately expressed and
natural selection immediately favors
it. A recessive resistance gene will
increases in frequency much more
slowly than a dominant resistance
gene.

homozygote) may be needed to cope.
The large amount of pesticide makes
the resistance gene effectively recessive.

The relative fitnesses of the resistant
and non-resistant genotypes may be
influenced by the way the pesticide is
applied in space. If pesticides are
applied in some places but not others,
the non-resistant genotypes will have 
a selective advantage in the localities
where there is no pesticide. The average
fitness of the resistant genotype will
then not be so high, relative to the non-
resistant genotype, as it would be if the
pesticide were applied indiscriminately
in the whole region.

Rausher (2001) refers to the com-
bination of these two policies as the
“high dose/refuge strategy.” However,
the strategy requires certain conditions
to succeed in slowing the evolution of
resistance, even in theory, and very little
practical work has been done to test it.
Currently, it is a research problem for
the future. However, the idea does
illustrate how the evolutionary models
of this chapter can have practical ap-
plications. The economic value of these
models could even turn out to be huge.

Further reading: Rausher (2001).

. . . by relative survival within a
generation . . .
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genotypes have the same fertility. These assumptions can all be tested by further work.
For instance, survival can be measured at the other life stages too, and fertility can also
be assessed. In a few cases, lifetime fitnesses have been measured comprehensively, by
tracing survival and reproduction from birth to death.

The second method is to measure changes in gene frequencies between generations.
We then substitute the measurements into the formula that expresses fitness in terms 
of gene frequencies in successive generations (equation 5.6). Both methods have been
used in many cases; the main problems are the obvious difficulties of accurately measur-
ing survival and gene frequencies, respectively. Apart from them, in the examples we
considered there were also difficulties in understanding the genetics of the characters: we
need to know which phenotypes correspond to which genotypes in order to estimate
genotype fitnesses.

We shall meet a third method of estimating fitness below, in the case of sickle cell
anemia (see Table 5.9, p. 126). It uses deviations from the Hardy–Weinberg ratios. It
can be used only when the gene frequencies in the population are constant between the
stages of birth and adulthood, but the genotypes have different survival. It therefore
cannot be used in the examples of directional selection against a disadvantageous gene
that we have been concerned with so far, because in them the gene frequency in the
population changes between birth and adult stages.

We have discussed the inference of fitness in detail because the fitnesses of different
genotypes are among the most important variables a perhaps the most important 
variables a in the theory of evolution. They determine, to a large extent, which genotypes
we can expect to see in the world today. The examples we have looked at, however,
illustrate that fitnesses are not easy to measure. We require long time series and large
sample sizes, and even then the estimates may be subject to “other things being equal”
assumptions. Therefore, despite their importance, they have been measured in only a
small number of the systems that biologists are interested in. (That does not mean that
the absolute number of such studies is small. A review of research on natural selection
in the wild by Endler in 1986 contains a table (24 pages long) listing all the work he had
located. Fitnesses have only been measured in a minority a an unknown minority a of
those 24 pages’ worth of studies of natural selection, but the number could still be 
non-trivial.) Many unsolved controversies in evolutionary biology implicitly concern
values of fitnesses, but in systems in which it has not been possible to measure fitnesses
directly with sufficient accuracy or in a sufficiently large number of cases. The con-
troversy about the causes of molecular evolution in Chapter 7 is an example. When 
we come to discuss controversies of this sort it is worth bearing in mind what would
have to be done to solve them by direct measurements of fitness.

5.10 Natural selection operating on a favored allele at 
a single locus is not meant to be a general model 
of evolution

Evolutionary change in which natural selection favors a rare mutation at a single 
locus, and carries it up to fixation, is one of the simplest forms of evolution. Sometimes
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evolution may happen that way. But things can be more complicated in nature. We
have considered selection in terms of different chances of survival from birth to adult-
hood; but selection can also take place by differences in fertility, if individuals of differ-
ent genotypes a after they have survived to adulthood a produce different numbers of 
offspring. The model had random mating among the genotypes: but mating may be
non-random. Moreover, the fitness of a genotype may vary in time and space, and
depend on what genotypes are present at other loci (a subject we shall deal with in
Chapter 8). Much of evolutionary change probably consists of adjustments in the 
frequencies of alleles at polymorphic loci, as fitnesses fluctuate through time, rather
than the fixation of new favorable mutations.

These complexities in the real world are important, but they do not invalidate a or
trivialize a the one-locus model. For the model is intended as a model. It should be
used as an aid to understanding, not as a general theory of nature. In science, it is a good
strategy to build up an understanding of nature’s complexities by considering simple
cases first and then building on them to understand the complex whole. Simple ideas
rarely provide accurate, general theories; but they often provide powerful paradigms.
The one-locus model is concrete and easy to understand and it is a good starting point
for the science of population genetics. Indeed, population geneticists have constructed
models of all the complications listed in the previous paragraph, and those models are
all developments within the general method we have been studying.

5.11 A recurrent disadvantageous mutation will evolve 
to a calculable equilibrial frequency

The model of selection at one locus revealed how a favorable mutation will spread through
a population. But what about unfavorable mutations? Natural selection will act to elim-
inate any allele that decreases the fitness of its bearers, and the allele’s frequency will
decrease at a rate specified by the equations of Section 5.6; but what about a recurrent
disadvantageous mutation that keeps arising at a certain rate? Selection can never
finally eliminate the gene, because it will keep on reappearing by mutation. In this case,
we can work out the equilibrial frequency of the mutation: the equilibrium is between the
mutant gene’s creation, by recurrent mutation, and its elimination by natural selection.

To be specific, we can consider a single locus, at which there is initially one allele, 
a. The gene has a tendency to mutate to a dominant allele, A. We must specify the
mutation rate and the selection coefficient (fitness) of the genotypes: define m as the
mutation rate from a to A per generation. We will ignore back mutation (though actu-
ally this assumption does not matter). The frequency of a is q, and of A is p. Finally, we
define the fitnesses as follows:

Genotype aa Aa AA
Fitness 1 1 − s 1 − s

Evolution in this case will proceed to an equilibrial frequency of the gene A (we can 
write the stable equilibrium frequency as p*). If the frequency of A is higher than the
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equilibrium, natural selection removes more A genes than mutation creates and the
frequency decreases; vice versa if the frequency is lower than the equilibrium. At the
equilibrium, the rate of loss of A genes by selection equals their rate of gain by mutation.

We can use that statement to calculate the equilibrial gene frequency p*. What is the
rate per generation of creation of A genes by mutation? Each new A gene originates by
mutation from an a gene and the chance that any one a gene mutates to an A gene is the
mutation rate m. A proportion (1 − p) of the genes in the population are a genes.
Therefore:

Total rate of creation of A genes by mutation = m(1 − p)

And what is the rate at which A genes are eliminated? Each A gene has a (1 − s) chance of
surviving, or an s chance of dying. A proportion p of the genes in the population are A.
Therefore:

Total rate of loss of A genes by selection = ps

At the equilibrium gene frequency (p*):

Rate of gain of A gene = rate of loss of A gene
m(1 − p*) = p*s (5.8)

Which can be multiplied out:

m − mp* = p*s
p* = m/(s + m)

Of the two terms in the denominator, the mutation rate (maybe 10−6, Section 2.6, p. 32)
will usually be much less than the selection coefficient (perhaps 10−1 or 10−2). With
these values s + m ≈ s and the expression is therefore usually given in the approximate
form:

p* = m/s (5.9)

The simple result is that the equilibrium gene frequency of the mutation is equal to
the ratio of its mutation rate to its selective disadvantage. The result is intuitive: the
equilibrium is the balance between the rates of creation and elimination of the gene. To
obtain the result, we used an argument about an equilibrium. We noticed that at the
equilibrium the rate of loss of the gene equals the rate of gain and used that to work out
the exact result. This is a powerful method for deriving equilibria, and we shall use an
analogous argument in the next section.

The expression p = m/s allows a rough estimate of the mutation rate of a harmful
mutation just from a measurement of the mutant gene’s frequency. If the mutation is
rare, it will be present mainly in heterozygotes, which at birth will have frequency 2pq.
If p is small, q ≈ 1 and 2pq ≈ 2p. N is defined as the frequency of mutant bearers, which
equals the frequency of heterozygotes: i.e., N = 2p. As p = m/s, m = sp; if we substitute
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p = N/2, m = sN/2. If the mutation is highly deleterious, s ≈ 1 and m = N/2. The mutation
rate can be estimated as half the birth rate of the mutant type. The estimate is clearly
approximate, because it relies on a number of assumptions. In addition to the assump-
tions of high s and low p, mating is supposed to be random. We usually have no means
of checking whether it is.

Chondrosdystrophic dwarfism is a dominant deleterious mutation in humans. In
one study, 10 births out of 94,075 had the gene, a frequency of 10.6 × 10−5. The estimate
of the mutation rate by the above method is then m = 5.3 × 10−5. However, it is possible
to estimate the selection coefficient, enabling a more accurate estimate of the mutation
rate. In another study, 108 chondrodystrophic dwarves produced 27 children; their
457 normal siblings produced 582 children. The relative fitness of the dwarves was 
(27/108)/(582/457) = 0.196; the selection coefficient s = 0.804. Instead of assuming
s = 1, we can use s = 0.804. Then the mutation rate is sN/2 = 4.3 × 10−5, a rather lower
figure because with lower selection the same gene frequency can be maintained by a
lower mutation rate.

For many genes, we do not know the dominance relations of the alleles at the locus. A
similar calculation can be done for a recessive gene, but the formula is different, and it
differs again if the mutation has intermediate dominance. We can only estimate the
mutation rate from p = m/s if we know the mutation is dominant. The method is there-
fore unreliable unless its assumptions have been independently verified. However, the
general idea of this section a that a balance between selection and mutation can exist
and explain genetic variation a will be used in later chapters.

5.12 Heterozygous advantage

5.12.1 Selection can maintain a polymorphism when the heterozygote
is fitter than either homozygote

We come now to an influential theory. We are going to consider the case in which the
heterozygote is fitter than both homozygotes. The fitnesses can be written:

Genotype AA Aa aa
Fitness 1 − s 1 1 − t

t, like s, is a selection coefficient and has a value between 0 and 1. What happens here?
There are three possible equilibria, but two of them are trivial. p = 1 and p = 0 are stable
equilibria, but only because there is no mutation in the model. The third equilibrium is
the interesting one; it has both genes present, and we can calculate the equilibrial gene
frequencies by a similar argument to the one outlined in the previous section. The 
condition in which a population contains more than one gene is called polymorphism.

A genes and a genes are both removed by selection. The A genes are removed because
they appear in the inferior AA homozygotes and the a genes because they appear in 
aa homozygotes. At the equilibrium, both genes must have the same chance of being
removed by selection. If an A gene has a higher chance of being removed than an a gene,

. . . which can sometimes be used
to estimate the mutation rate

In some cases, heterozygotes have
higher fitness than homozygotes
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the frequency of a is increasing, and vice versa. Only when the chance is the same for
both will the gene frequencies be stable.

What is the chance that an A gene will be carried by an individual who will die with-
out reproducing? An A gene is either (with chance q) in a heterozygote and survives or
(with chance p) in an AA homozygote and has a chance s of dying. Its total chance of
dying is therefore ps. An a gene similarly is either (with chance p) in a heterozygote and
survives or (with chance q) in an aa homozygote and has chance t of dying: its chance of
death is qt. At the equilibrium,

Chance of death of an A gene = chance of death of an a gene

p*s = q*t (5.10)

Substitute p*s = (1 − p*)t

and rearrange p* = t /(s + t) (5.11) 

Similarly if we substitute q = (1 − p), q* = s/(s + t). Now we have derived the equilib-
rial gene frequencies when both homozygotes have lower fitness than the heterozygote.
The equilibrium has all three genotypes present, even though the homozygotes are
inferior and are selected against. They continue to exist because it is impossible to 
eliminate them. Matings among heterozygotes generate homozygotes. The exact gene
frequency at equilibrium depends on the relative selection against the two homo-
zygotes. If, for instance, AA and aa have equal fitness, then s = t and p = 1/2 at equilib-
rium. If AA is relatively more unfit than aa then s > t and p < 1/2; there are fewer of the
more strongly selected against genotypes.

When heterozygotes are fitter than the homozygotes, therefore, natural selection 
will maintain a polymorphism. The result was first proved by Fisher in 1922 and 
independently by Haldane. We shall come later to consider in more detail why genetic
variability exists in natural populations, and heterozygous advantage will be one of 
several controversial explanations to be tested.

5.12.2 Sickle cell anemia is a polymorphism with 
heterozygous advantage

Sickle cell anemia is the classic example of a polymorphism maintained by hetero-
zygous advantage. It is a nearly lethal condition in humans, responsible for about
100,000 deaths a year. It is caused by a genetic variant of α-hemoglobin. If we symbolize
the normal hemoglobin allele by A and the sickle cell hemoglobin by S, then people
who suffer from sickle cell anemia are SS. Hemoglobin S causes the red blood cells to
become curved and distorted (sickle shaped); they can then block capillaries and cause
severe anemia if the blocked capillary is in the brain. About 80% of SS individuals die
before reproducing. With such apparently strong selection against hemoglobin S it was
a puzzle why it persisted at quite high frequencies (10% or even more) in some human
populations.

If we compare a map of the incidence of malaria with a map of the gene frequency
(Figure 5.9), we see that they are strikingly similar. Perhaps hemoglobin S provides
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some advantage in malarial zones. Allison (1954) showed that, although SS is almost
lethal, the heterozygote AS is more resistant to malaria than the homozygote AA.
(Allison’s was the first demonstration of natural selection at work in a human popula-
tion.) The full reason was discovered later a AS red blood cells do not normally sickle,
but they do if the oxygen concentration falls. When the malarial parasite Plasmodium
falciparum enters a red blood cell it destroys (probably eats) the hemoglobin, which
causes the oxygen concentration in the cell to go down. The cell sickles and is destroyed,
along with the parasite. The human survives because most of the red blood cells are
uninfected and carry oxygen normally. Therefore, where the malarial parasite is com-
mon, AS humans survive better than AA, who suffer from malaria.

Once the heterozygote had been shown physiologically to be at an advantage, the
adult genotype frequencies can be used to estimate the relative fitnesses of the three
genotypes. The fitnesses are:
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Figure 5.9
The global incidence of malaria
coincides with that of the sickle
cell form of hemoglobin. (a) A
map of the frequency of the S
allele of hemoglobin. (b) A map
of malarial incidence. Redrawn,
by permission of the publisher,
from Bodmer & Cavalli-Sforza
(1976).

Sickle cell hemoglobin confers
resistance to malaria

EVOC05  11/01/2005  11:11  Page 125



..

126 PART 2 / Evolutionary Genetics

Genotype AA AS SS
Fitness 1 − s 1 1 − t

If the frequency of gene A = p and of gene S = q, then the relative genotype frequencies
among adults will be p2(1 − s) : 2pq : q2(1 − t). If there were no selection (s = t = 0), the
three genotypes would have Hardy–Weinberg frequencies of p2 : 2pq : q2.

Selection causes deviations from the Hardy–Weinberg frequencies. Take the geno-
type AA as an example. The ratio of the observed frequency in adults to that predicted
from the Hardy–Weinberg ratio will be (1 − s)/1. The frequency expected from the
Hardy–Weinberg principle is found by the usual method: the expected frequency is p2,
where p is the observed proportion of AA plus half the observed proportion of AS. Table
5.9 illustrates the method for a Nigerian population, where s = 0.12 (1 − s = 0.88) and
t = 0.86 (1 − t = 0.14).

The method is only valid if the deviation from Hardy–Weinberg proportions is
caused by heterozygous advantage and the genotypes differ only in their chance of 
survival (not their fertility). If heterozygotes are found to be in excess frequency in a
natural population, it may indeed be because the heterozygote has a higher fitness.
However, it could also be for other reasons. Disassortative mating, for instance, 
can produce the same result (in this case, disassortative mating would mean that aa
individuals preferentially mate with AA individuals). But for sickle cell anemia, the
physiological observations showed that the heterozygote is fitter and the procedure is
well justified. Indeed, in this case, although it has not been checked whether mating is

Table 5.9
Estimates of selection coefficients for sickle cell anemia, using genotype frequencies in adults.
The sickle cell hemoglobin allele is S, and the normal hemoglobin (which actually consists of
more than one allele) is A. The genotype frequencies are for the Yorubas of Ibadan, Nigeria.
One small detail is not explained in the text. The observed : expected ratio for the heterozygote
may not be equal to 1. Here it turned out to be 1.12. All the observed : expected ratios are
therefore divided by 1.12 to make them fit the standard fitness regime for heterozygote
advantage. From Bodmer & Cavalli-Sforza (1976).

Observed Expected 
adult Hardy–Weinberg Ratio 

Genotype frequency (O) frequency (E) O : E Fitness

SS 29 187.4 0.155 0.155/1.12 = 0.14 = 1 − t
SA 2,993 2,672.4 1.12 1.12/1.12 = 1.00
AA 9,365 9,527.2 0.983 0.983/1.12 = 0.88 = 1 − s

Total 12,387 12,387

Calculation of expected frequencies: gene frequency of S = frequency of SS + 1/2 (frequency of SA) = (29 +
2,993/2)/12,387 = 0.123. Therefore the frequency of A allele = 1 − 0.123 = 0.877. From the Hardy–Weinberg
theorem, the expected genotype frequencies are (0.123)2 × 12,387, 2(0.877)(0.123) × 12,387, and (0.877)2 ×
12,387, for AA, AS, and SS, respectively.

We deduce selection coefficients of
0.12 and 0.86
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random, the near lethality of SS means that disassortative mating will be unimportant;
however, the assumption that the genotypes have equal fertility may well be false.

5.13 The fitness of a genotype may depend on its frequency

The next interesting complication is to consider selection when the fitness of a geno-
type depends on its frequency. In the models we have considered so far, the fitness of 
a genotype (1, 1 − s, or whatever) was constant, regardless of whether the genotype 
was rare or common. Now we consider the possibility that the fitness of a genotype 
goes up or down as the genotype frequency increases in the population (Figure 5.10).
Frequency-dependent selection means that natural selection is acting and the fitnesses 
of the genotypes vary with the frequency of the genotypes. The two main kinds are 
negative frequency dependence, in which the fitness of a genotype goes down as its 
frequency goes up, and positive frequency dependence, in which the fitness of a genotype
goes up as its frequency goes up.

Negative frequency dependence can arise in host–parasite interactions. For instance,
two genotypes of a host may differ in their ability to keep out two genotypes of a para-
site. This kind of set-up is like a lock and key. It is as if the two host genotypes are like
two different locks, and the two parasite genotypes are like two different keys. One of
the parasite keys fits one of the host locks and the other parasite key fits the other host
lock. Then, if one of the host genotypes is in high frequency, natural selection will favor
the parasite genotype that can penetrate that common kind of host. The result is that 
a high frequency automatically brings a disadvantage to a host genotype, because it 
creates an advantage for the kind of parasite than can exploit it. As the frequency of 
a host genotypes increases, its fitness soon decreases.

Lively & Dybdahl (2000) recently described an example where the host is a snail,
Potamopyrgus antipodarum, which (as its name hints at) lives in New Zealand, in 
freshwater habitats. The snail suffers from various parasites, of which a trematode
called Microphallus is the most important (it is a parasitic castrator). The authors dis-
tinguished several strains (or clones) of the snail host and measured the frequency of
each clone. They then measured, in an experiment, the ability of Microphallus to infect
each clone. Figure 5.11 shows the infection rates achieved by parasites collected from
two lakes, when experimentally exposed to snails taken from one of the two lakes. The
local parasites infected the common clones better than the rare clones. It was the high
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Figure 5.10
Frequency-dependent
selection. (a) Negative
frequency-dependent fitness
means that the fitness of a
genotype decreases as the
frequency of the genotype
increases. (b) Positive
frequency-dependent fitness
means that the fitness of a
genotype goes up as its
frequency increases. In general,
frequency dependence refers to
any case in which the graph is
anything other than flat. A flat
line, with fitness constant for all
genotype frequencies, means
that selection is not frequency
dependent.

In host–parasite relations, the
fitness of a genotype may depend
on frequency

Snails and their parasite provide an
example
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frequency of a clone that made it vulnerable to parasites. A clone that was common in
one lake but rare in another was vulnerable to parasitism where it was common but not
where it was rare.

Parasite–host relations are one important source of negative frequency-dependent
selection (we return to this in Section 12.2.3, p. 323). Another important source is 
multiple niche polymorphism, a topic first discussed by Levene (1953). Suppose that a
species contains several genotypes, and each genotype is adapted to a different set of
environmental conditions. Genotypes AA and Aa might be adapted to the shade, and
aa to sunny places (shady, and sunny, places then correspond to two “niches”). Then
when the A gene is rare, AA and Aa experience less competition in their preferred areas,
because there are fewer of them. As the frequency of A goes up, the shady areas become
more crowded, competition increases, and fitness will tend to go down.

Frequency dependence is often generated by biological interactions. Competition and
parasite–host relations are both biological interactions, and can generate negative fre-
quency dependence. We shall meet some other examples, such as sex ratios (Section 12.5,
p. 337) later in the book. Negative frequency-dependent fitnesses are important
because they can produce stable polymorphisms within a species. As the frequency of
each genotype goes up, its fitness goes down. Natural selection favors a gene when it is
rare, but works against it when it is common. The result is that genotypes equilibrate at
some intermediate frequency.

Positive frequency-dependent selection does not produce stable polymorphisms.
Indeed it actively eliminates polymorphism, producing a genetically uniform popula-
tion. For example, some species of insects have “warning coloration.” They are brightly
colored, and poisonous to eat. The bright coloration may reduce the chance of pre-
dation. When a bird eats the warningly colored insect, the bird is made sick and will
remember not to eat an insect that looks like that again. However, the bird’s lesson is
not advantageous for the insect that made the bird sick; that insect is probably killed.
When warningly colored insects are rare in a population mainly consisting of dull and
cryptic individuals, the warningly colored genotypes are likely to have a low fitness. 
Few other insects exist to “educate” the local birds. This can create a problem in the
evolution of warning coloration, because rare new mutants maybe selected against. 
The problem is not the point here, however. We are only considering it as an example
of positive frequency dependence. The fitness of warningly colored genotypes will be
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(a) Sympatric parasites (b) Allopatric parasitesFigure 5.11
Parasites penetrate host
genotypes more efficiently
when they are locally abundant.
Parasites from two lakes
(Poerua and Ianthe) were
experimentally put with snails
of several genetic types (clones)
from Lake Poerua. The four
clones called 12, 19, 22, and 63
were common in the lake;
several other clones were rare
and they are all lumped
together in the figure. The
infection rates achieved by
parasites taken from the two
lakes were measured for each
clone. (a) Infection rates
achieved by parasites from Lake
Poerua (sympatric parasites).
(b) Infection rates achieved by
parasites from Lake Ianthe
(allopatric parasites). Note the
higher infection rates achieved
by the parasites on their local
snails: the points are higher in
(a) than in (b). But mainly note
that the Poerua parasites in (a)
infected the common snail
clones more effectively than the
rare clones; whereas the Ianthe
parasites in (b) are no more
effective with the common than
the rare clones. From Lively &
Dybdahl (2000). © 2000
Macmillan Magazines Ltd.

Frequency dependence can also
arise in other circumstances
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higher at high frequencies, where the local birds are well educated about the dangers of
eating the warningly colored forms.

The purpose of Sections 5.11–5.13 has been to illustrate the different mechanisms by
which natural selection can maintain polymorphism. In Chapter 6 we look at another
mechanism that can maintain polymorphism a genetic drift. Then, in Chapter 7, we
tackle the question of how important the mechanisms are in nature.

5.14 Subdivided populations require special population
genetic principles

5.14.1 A subdivided set of populations have a higher proportion of
homozygotes than an equivalent fused population: this is 
the Wahlund effect

So far we have considered population genetics within a single, uniform population. In
practice, a species may consist of a number of separate populations, each more or less
isolated from the others. The members of a species might, for example, inhabit a num-
ber of islands, with each island population being separated by the sea from the others.
Individuals might migrate between islands from time to time, but each island popula-
tion would evolve to some extent independently. A species with a number of more or
less independent subpopulations is said to have population subdivision.

Let us see first what effect population subdivision has on the Hardy–Weinberg 
principle. Consider a simple case in which there are two populations (we can call them
population 1 and population 2), and we concentrate on one genetic locus with two 
alleles, A and a. Suppose allele A has frequency 0.3 in population 1 and 0.7 in popula-
tion 2. If the genotypes have Hardy–Weinberg ratios they will have the frequencies, and
average frequencies, in the two populations shown in Table 5.10. The average genotype
frequencies are 0.29 for AA, 0.42 for Aa, and 0.29 for aa. Now suppose that the two
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Table 5.10
The frequency of genotypes AA, Aa, and aa in two populations when A has frequency 0.3 in
population 1 and 0.7 in population 2. The average genotypes are calculated assuming the two
populations are of equal size.

Genotype

AA Aa aa

Frequency (0.3)2 = 0.09 2(0.3)(0.7) = 0.42 (0.7)2 = 0.49 population 1
(0.7)2 = 0.49 2(0.7)(0.3) = 0.42 (0.3)2 = 0.09 population 2

Average 0.58/2 = 0.29 0.84/2 = 0.42 0.58/2 = 0.29

Populations may be subdivided
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populations are fused together. The gene frequencies of A and a in the combined popu-
lation are (0.3 + 0.7)/2 = 0.5, and the Hardy–Weinberg genotype frequencies are:

Genotype AA Aa aa
Frequency 0.25 0.5 0.25

In the large, fused population there are fewer homozygotes than in the average for the
set of subdivided populations. This is a general, and mathematically automatic, result.
The increased frequency of homozygotes in subdivided populations is called the
Wahlund effect.

The Wahlund effect has a number of important consequences. One is that we have to
know about the structure of a population when applying the Hardy–Weinberg prin-
ciple to it. Suppose, for example, we had not known that populations 1 and 2 were 
independent. We might have sampled from both, pooled the samples indiscriminately,
and then measured the genotype frequencies. We should find the frequency distribu-
tion for the average of the two populations (0.29, 0.42, 0.29); but the gene frequency
would apparently be 0.5. There would seem to be more homozygotes than expected
from the Hardy–Weinberg principle. We might suspect that selection, or some other
factor, was favoring homozygotes. In fact both subpopulations are in perfectly good
Hardy–Weinberg equilibrium and the deviation is due to the unwitting pooling of 
the separate populations. We need to look out for population subdivision when inter-
preting deviations from Hardy–Weinberg ratios.

Second, when a number of previously subdivided populations merge together, the
frequency of homozygotes will decrease. In humans, this can lead to a decrease in the
incidence of rare recessive genetic diseases when a previously isolated population
comes into contact with a larger population. The recessive disease is only expressed 
in the homozygous condition, and when the two populations start to interbreed, the
frequency of those homozygotes goes down.

5.14.2 Migration acts to unify gene frequencies between 
populations

When an individual migrates from one population to another, it carries genes that 
are representative of its own ancestral population into the recipient population. If it
successfully establishes itself and breeds it will transmit those genes between the popu-
lations. The transfer of genes is called gene flow. If the two populations originally had
different gene frequencies and if selection is not operating, migration (or, to be exact,
gene flow) alone will rapidly cause the gene frequencies of the different populations to
converge. We can see how rapidly in a simple model.

Consider again the case of two populations and one locus with two alleles (A and a).
Suppose this time that one of the populations is much larger than the other, say popula-
tion 2 is much larger than population 1 (2 might be a continent and 1 a small island 
off it); then practically all the migration is from population 2 to population 1. The 
frequency of allele a in population 1 in generation t is written q1(t); we can suppose that
the frequency of a in the large population 2 is not changing between generations and
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The Wahlund effect concerns the
frequency of homozygotes in
subdivided populations

The spatial movement of genes is
called gene flow
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write it as qm. (We are interested in the effect of migration on the gene frequency in
population 1 and can ignore all other effects, such as selection.) Now, if we pick on any
one allele in population 1 in generation (t + 1), it will either be descended from a native
of the population or from an immigrant. Define m as the chance that it is a migrant
gene. (Earlier in the chapter, m was used for the mutation rate: now it is the migration
rate.) If our gene is not a migrant (chance (1 − m)) it will be an a gene with chance q1(t),
whereas if it is a migrant (chance m) it will be an a gene with chance qm. The total 
frequency of a in population 1 in generation (t + 1) is:

q1(t+1) = (1 − m)q1(t) + mqm (5.12)

This can be rearranged to show the effect of t generations of migration on the gene fre-
quency in population 1. If q1(0) is the frequency in the 0th generation, the frequency in
generation t will be:

q1(t) = qm + (q1(0) − qm)(1 − m)t (5.13)

(From t = 1 it is easy to confirm that this is indeed a rearrangement of the previous
equation.) The equation says that the difference between the gene frequency in popula-
tion 1 and population 2 decreases by a factor (1 − m) per generation. At equilibrium,
q1 = qm and the small population will have the same gene frequency as the large popula-
tion (Figure 5.12). In Figure 5.12, the gene frequencies converge in about 30 genera-
tions with a migration rate of 10%. Similar arguments apply if, instead of there being
one source and one recipient population, the source is a set of many subpopulations,
and pm is their average gene frequency, or if there are two populations both sending
migrants to, and receiving them from, another.

Migration will generally unify gene frequencies among populations rapidly in evolu-
tionary time. In the absence of selection, migration is a strong force for equalizing the
gene frequencies of populations within a species. Provided that the migration rate is
greater than 0, gene frequencies will eventually equalize. Even if only one successful
migrant moves into a population per generation, gene flow inevitably draws that popu-
lation’s gene frequency to the species’ average. Gene flow acts, in a sense, to bind the
species together.
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Figure 5.12
Migration causes the rapid convergence of gene frequencies in the
populations exchanging migrants. Here a source population with
gene frequency qm = 0.4 sends migrants to two subpopulations,
with initial gene frequencies of 0.9 and 0.1. They converge, with 
m = 0.1, onto the source population’s gene frequency in about 
30 generations.

We construct a model of gene
frequencies with migration

Gene flow binds biological species
together
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5.14.3 Convergence of gene frequencies by gene flow is illustrated by the
human population of the USA

The MN blood group is controlled by one locus with two alleles (Section 5.4).
Frequencies of the M and N alleles have been measured, for example in European 
and African Americans in Claxton, Georgia, and among West Africans (whom we can
assume to be representative of the ancestral gene frequency of the African American
population of Claxton). The M allele frequency is 0.474 in West Africans, 0.484 in
African Americans in Claxton, and 0.507 in the European Americans of Claxton. (The
frequency of the N allele is equal to 1 minus the frequency of the M allele.) The gene 
frequency among African Americans is intermediate between the frequencies for
European Americans and for the West African sample. Individuals of mixed parentage
are usually categorized as African American and, if we ignore the possibility of selection
favoring the M allele in the USA, we can treat the change in gene frequency in the
African American population as due to “migration” of genes from the European
American population. The measurements can then be used to estimate the rate of 
gene migration. In equation 5.13, qm = gene frequency in the European American 
population (the source of the “migrant” genes), q0 = 0.474 (the original frequency 
in the African American population), and qt = 0.484. As an approximate figure, we 
can suppose that the black population has been in the USA for 200–300 years, or about
10 generations. Then:

0.484 = 0.507 + (0.474 − 0.507)(1 − m)10

This can be solved to find m = 0.035. That is, for every generation on average about
3.5% of the genes at the MN locus have migrated from the white population to the
black population of Claxton. (Other estimates by the same method but using different
gene loci suggest slightly different figures, more like 1%. The important point here is
not the particular result; it is to illustrate how the population genetics of gene flow 
can be analyzed.) Notice again the rapid rate of genetic unification by migration: in
only 10 generations, one-third of the gene frequency difference has been removed
(after 10 generations the difference is 0.484 − 0.474, against the original difference of
0.507 − 0.474).

5.14.4 A balance of selection and migration can maintain genetic
differences between subpopulations

If selection is working against an allele within one subpopulation, but the allele is con-
tinually being introduced by migration from other populations, it can be maintained
by a balance of the two processes. We can analyze the balance between the two pro-
cesses by much the same arguments as we used above for selection–mutation balance
and heterozygous advantage. The simplest case is again for one locus with two alleles.
Imagine selection in one subpopulation is working against a dominant A allele. The
fitnesses of the genotypes are:
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AA Aa aa
1 − s 1 − s 1

The A allele has frequency p in the local population. Suppose that in other subpopula-
tions, natural selection is more favorable to the gene A, and it has a higher frequency in
them, pm on average. pm will then be the frequency of A among immigrants to our local
population. In the local population, A genes are lost at a rate ps per generation. They are
gained at a rate (pm − p)m per generation: m is the proportion of genes that are immig-
rants in a generation. Immigration increases the frequency in the local population by
an amount pm − p because gene frequency is increased only in so far as the immigrating
population has a higher frequency of A than the local population. If the immigrating
gene frequency is the same as the local gene frequency, immigration has no effect.

There are three possible outcomes. If migration is powerful relative to selection, 
the rate of gain of A genes by immigration will exceed the rate of loss by selection. The
local population will be swamped by immigrants. The frequency of the A gene will
increase until it reaches pm. If migration is weak relative to selection, the frequency of 
A will decrease until it is locally eliminated. The third possibility is an exact balance
between migration and selection. There will be an equilibrium (with local frequency 
of A = p*) if:

Rate of gain of A by migration = rate of loss of A by selection

(pm − p*)m = p*s (5.14)

p* (5.15)

In the first case, migration unifies the gene frequencies in both populations, much in
the same manner as Section 5.14.2: migration is so strong relative to selection that it is
as if selection were not operating. In the second and third cases, migration is not strong
enough to unify the gene frequencies and we should observe regional differences in the
gene frequency; it would be higher in some places than in others. In the third case there
is a polymorphism within the local population; A is maintained by migration even
though it is locally disadvantageous.

This section has made two main points. First, a balance of migration and selection is
another process to add to the list of processes that can maintain polymorphism.
Second, we have seen how migration can be strong enough to unify gene frequencies
between subpopulations, or if migration is weaker the gene frequencies of different
subpopulations can diverge under selection. This theory is also relevant in the question
of the relative importance of gene flow and selection in maintaining biological species
(Section 13.7.2, p. 369).
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Summary

camouflaged form. An inherent advantage to the
melanic form, and migration, are also needed to
explain the observations.
7 The evolution of resistance to pesticides in insects 
is in some cases due to rapid selection for a gene at a
single locus. The fitness of the resistant types can be
inferred, from the rate of evolution, to be as much as
twice that of the non-resistant insects.
8 If a mutation is selected against but keeps on arising
repeatedly, the mutation settles at a low frequency 
in the population. It is called selection–mutation 
balance.
9 Selection can maintain a polymorphism when 
the heterozygote is fitter than the homozygote and
when fitnesses of genotypes are negatively frequency
dependent.
10 Sickle cell anemia is an example of a polymorph-
ism maintained by heterozygous advantage.
11 Subdivided populations have a higher propor-
tion of homozygotes than an equivalent large, fused
population.
12 Migration, in the absence of selection, rapidly
unifies gene frequencies in different subpopulations;
and it can maintain an allele that is selected against in a
local subpopulation.

1 In the absence of natural selection, and with random
mating in a large population in which inheritance is
Mendelian, the genotype frequencies at a locus move
in one generation to the Hardy–Weinberg ratio; the
genotype frequencies are then stable.
2 It is easy to observe whether the genotypes at a locus
are in the Hardy–Weinberg ratio. In nature they will
often not be, because the fitnesses of the genotypes are
not equal, mating is non-random, or the population is
small.
3 A theoretical equation for natural selection at a single
locus can be written by expressing the frequency of a
gene in one generation as a function of its frequency in
the previous generation. The relation is determined by
the fitnesses of the genotypes.
4 The fitnesses of the genotypes can be inferred from
the rate of change of gene frequency in real cases of
natural selection.
5 From the rate at which the melanic form of the 
peppered moth replaced the light-colored form, the
melanic form must have had a selective advantage of
about 50%.
6 The geographic pattern of melanic and light-
colored forms of the peppered moth cannot be ex-
plained only by the selective advantage of the better
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Further reading

There are a number of textbooks about population genetics. Crow (1986), Gillespie
(1998), Hartl (2000), and Maynard Smith (1998) are relatively introductory. More
comprehensive works include Hartl & Clark (1997) and Hedrick (2000). Crow &
Kimura (1970) is a classic account of the mathematical theory. Dobzhansky (1970) is
a standard study; Lewontin et al. (1981) contains Dobzhansky’s most famous series 
of papers. Bell (1997a, 1997b) provides a comprehensive and a synoptic guide to 
selection.

For the peppered moth, Majerus (1998) is a modern, and Kettlewell (1973) a classic,
account. Majerus (2002) is a more popular book, and contains a chapter on melanism.
Grant (1999) is a review of Majerus (1998) and is also a good minireview of the topic in
itself. Grant & Wiseman (2002) discuss the parallel rise and fall of the melanic form of
the peppered moth in North America.

On pests and pesticides, see McKenzie (1996) and McKenzie & Batterham (1994).
Lenormand et al. (1999) add further themes and molecular techniques, demonstrat-
ing seasonal cycles. The special issue of Science (4 October 2002, pp. 79–183) on the
Anopheles genome has much background material on insecticide resistance and the
various kinds of mosquito. See also Box 8.1 and Section 10.10, and their further reading
lists.

See Endler (1986) on measuring fitness in general; Primack & Kang (1989) for
plants; and Clutton-Brock (1988) for research on lifetime fitness.

The various selective means of maintaining polymorphisms are explained in the
general texts. In addition, see Lederburg (1999) on the classic Haldane (1949a) paper
and what it says about heterozygous advantage and sickle cell anemia. A recent poss-
ible example of heterozygote advantage in human HLA genes, providing resistance to 
HIV-1, is described by Carrington et al. (1999). Hori (1993) described a marvellous
example of frequency dependence in the mouth-handedness of scale-eating cichlid fish.
Another example is given by Gigord et al. (2001): the habits of naive bumblebees lead to
a color polymorphism in an orchid.
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Study and review questions

6 Here are some adult genotype frequencies for a 
locus with two alleles. The polymorphism is known 
to be maintained by heterozygous advantage, and the
fitneses of the genotypes are known to differ only in
survival (and not infertility). What are the fitnesses (or
selection coefficients) of the two homozygotes, relative
to a fitness of 1 for the heterozygote?

Genotype AA Aa aa
Frequency among adults 1/6 2/3 1/6

7 There are two populations of a species, called
population 1 and population 2. Migrants move from
population 1 to 2, but not vice versa. For a locus with 
two alleles A and a, in generation n, the gene frequency
of A is 0.5 in population 1 and 0.75 in population 2; in
generation 2 it is 0.5 in population 1 and 0.625 in
population 2. (a) What is the rate of migration, measured
as the chance an individual in population 2 is a first-
generation immigrant from population 1? (b) If the rate
of migration is the same in the next generation, what will
the frequency of A be in population 2 in generation 3?
[Questions 8–10 are more in the nature of questions for
further thought. They are not about things explicitly
covered in the chapter, but are slight extensions.]
8 What is the general effect of assortative mating on
genotype frequencies, relative to the Hardy–Weinberg
equilibrium, for (a) a locus with two alleles, one
dominant to the other; and (b) a locus with two alleles,
and no dominance (the heterozygote is a distinct
phenotype intermediate between the two
homozygotes)? And (c) what is the effect on genotype
frequencies of a mating preference, in which females
preferentially mate with males of (i) the dominant, and
(ii) the recessive phenotype?
9 Derive a recurrence relation, giving the frequency of
the dominant gene A one generation on (p′) in terms of
the frequency in any generation (p) and of the selection
coefficient (s) for selection against the dominant allele.
10 Derive the expression for the equilibrium gene
frequency (p*) for the mutation–selection balance 
when the disadvantageous mutation is recessive.

1 The following table gives genotype frequencies for five
populations. Which are in Hardy–Weinberg equilibrium?
For those that are not, suggest some hypotheses for why
they are not.

Genotype

Population AA Aa aa

1 25 50 25
2 10 80 10
3 40 20 40
4 0 150 100
5 2 16 32

2 For genotypes with the following fitnesses and
frequencies at birth:

Genotype AA Aa aa
Birth frequency p2 2pq q2

Fitness 1 1 1 − s

(a) What is the frequency of AA individuals in the adult
population? (b) What is the frequency of the gene A in
the adult population? (c) What is the mean fitness of the
population?
3 What is the mean fitness of this population?

Genotype AA Aa aa
Birth frequency 1/3 1/3 1/3
Fitness 1 1 − s 1

4 Consider a locus with two alleles, A and a. A is
dominant and selection is working against the recessive
homozygote. The frequency of A in two successive
generations is 0.4875 and 0.5. What is the selection
coefficient (s) against aa? (If you prefer to do it in your
head rather than with a calculater, round the frequency
of a in the first generation to 0.5 rather than 0.5125.)
5 What main assumption(s) is (or are) made in
estimating fitnesses by the mark–recapture method?
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